Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Virlogeux-Payant is active.

Publication


Featured researches published by Isabelle Virlogeux-Payant.


Veterinary Research | 2009

Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops

François Meurens; Mustapha Berri; Gael Auray; Sandrine Melo; Benoît Levast; Isabelle Virlogeux-Payant; Claire Chevaleyre; Volker Gerdts; Henri Salmon

Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3×108 cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer’s patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer’s patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections.


MicrobiologyOpen | 2012

Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis

Philippe Velge; Agnès Wiedemann; M. Rosselin; N. Abed; Z. Boumart; A. M. Chaussé; Olivier Grépinet; F. Namdari; Sylvie M. Roche; Aurore Rossignol; Isabelle Virlogeux-Payant

The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food‐ and water‐borne diseases ranging from self‐limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold‐ and warm‐blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island‐1. However, recent evidence shows that Salmonella can cause infection in a T3SS‐1‐independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper‐like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper‐like or Trigger‐like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella‐induced diseases and to Salmonella‐host specificity.


PLOS ONE | 2011

Conservation of Salmonella Infection Mechanisms in Plants and Animals

Adam Schikora; Isabelle Virlogeux-Payant; Eduardo Bueso; Ana Victoria Garcia; Theodora Nilau; Amélie Charrier; Sandra Pelletier; Pierrette Menanteau; Manuela Baccarini; Philippe Velge; Heribert Hirt

Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.


Cell Research | 2010

Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization

Manon Rosselin; Isabelle Virlogeux-Payant; Christian Roy; Elisabeth Bottreau; Pierre-Yves Sizaret; Lily Mijouin; Pierre Germon; Emmanuelle Caron; Philippe Velge; Agnès Wiedemann

Salmonella can invade non-phagocytic cells through its type III secretion system (T3SS-1), which induces a Trigger entry process. This study showed that Salmonella enterica, subspecies enterica serovar Enteritidis can also invade cells via the Rck outer membrane protein. Rck was necessary and sufficient to enable non-invasive E. coli and Rck-coated beads to adhere to and invade different cells. Internalization analysis of latex beads coated with different Rck peptides showed that the peptide containing amino acids 140-150 promoted adhesion, whereas amino acids between 150 and 159 modulated invasion. Expression of dominant-negative derivatives and use of specific inhibitors demonstrated the crucial role of small GTPases Rac1 and Cdc42 in activating the Arp2/3 complex to trigger formation of actin-rich accumulation, leading to Rck-dependent internalization. Finally, scanning and transmission electron microscopy with Rck-coated beads and E. coli expressing Rck revealed microvillus-like extensions that formed a Zipper-like structure, engulfing the adherent beads and bacteria. Overall, our results provide new insights into the Salmonella T3SS-independent invasion mechanisms and strongly suggest that Rck induces a Zipper-like entry mechanism. Consequently, Salmonella seems to be the first bacterium found to be able to induce both Zipper and Trigger mechanisms to invade host cells.


Infection and Immunity | 2007

The YfgL lipoprotein is essential for type III secretion system expression and virulence of Salmonella enterica Serovar Enteritidis.

Yann Fardini; Kamel Chettab; Olivier Grépinet; Sandrine Rochereau; Jérôme Trotereau; Philippa Harvey; Maı̈té Amy; Elisabeth Bottreau; Nat Bumstead; Paul A. Barrow; Isabelle Virlogeux-Payant

ABSTRACT Salmonella enterica, like many gram-negative pathogens, uses type three secretion systems (TTSS) to infect its hosts. The three TTSS of Salmonella, namely, TTSS-1, TTSS-2, and flagella, play a major role in the virulence of this bacterium, allowing it to cross the intestinal barrier and to disseminate systemically. Previous data from our laboratory have demonstrated the involvement of the chromosomal region harboring the yfgL, engA, and yfgJ open reading frames in S. enterica serovar Enteritidis virulence. Using microarray analysis and real-time reverse transcription-PCR after growth of bacterial cultures favorable for either TTSS-1 or TTSS-2 expression, we show in this study that the deletion in S. enterica serovar Enteritidis of yfgL, encoding an outer membrane lipoprotein, led to the transcriptional down-regulation of most Salmonella pathogenicity island 1 (SPI-1), SPI-2, and flagellar genes encoding the TTSS structural proteins and effector proteins secreted by these TTSS. In line with these results, the virulence of the ΔyfgL mutant was greatly attenuated in mice. Moreover, even if YfgL is involved in the assembly of outer membrane proteins, the regulation of TTSS expression observed was not due to an inability of the ΔyfgL mutant to assemble TTSS in its membrane. Indeed, when we forced the transcription of SPI-1 genes by constitutively expressing HilA, the secretion of the TTSS-1 effector protein SipA was restored in the culture supernatant of the mutant. These results highlight the crucial role of the outer membrane lipoprotein YfgL in the expression of all Salmonella TTSS and, thus, in the virulence of Salmonella. Therefore, this outer membrane protein seems to be a privileged target for fighting Salmonella.


Frontiers in Microbiology | 2015

Interactions of Salmonella with animals and plants

Agnès Wiedemann; Isabelle Virlogeux-Payant; Anne-Marie Chaussé; Adam Schikora; Philippe Velge

Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.


Microbiology | 2009

Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella.

Yann Fardini; Jérôme Trotereau; Elisabeth Bottreau; Charlène Souchard; Philippe Velge; Isabelle Virlogeux-Payant

In Escherichia coli, the assembly of outer-membrane proteins (OMP) requires the BAM complex and periplasmic chaperones, such as SurA or DegP. Previous work has suggested a potential link between OMP assembly and expression of the genes encoding type-III secretion systems. In order to test this hypothesis, we studied the role of the different lipoproteins of the BAM complex (i.e. BamB, BamC, BamD and BamE), and the periplasmic chaperones SurA and DegP, in these two phenotypes in Salmonella. Analysis of the corresponding deletion mutants showed that, as previously described with the DeltabamB mutant, BamD, SurA and, to a lesser extent, BamE play a role in outer-membrane biogenesis in Salmonella Enteritidis, while the membrane was not notably disturbed in DeltabamC and DeltadegP mutants. Interestingly, we found that BamD is not essential in Salmonella, unlike its homologues in Escherichia coli and Neisseria gonorrhoeae. In contrast, BamD was the only protein required for full expression of T3SS-1 and flagella, as demonstrated by transcriptional analysis of the genes involved in the biosynthesis of these T3SSs. In line with this finding, bamD mutants showed a reduced secretion of effector proteins by these T3SSs, and a reduced ability to invade HT-29 cells. As DeltasurA and DeltabamE mutants had lower levels of OMPs in their outer membrane, but showed no alteration in T3SS-1 and flagella expression, these results demonstrate the absence of a systematic link between an OMP assembly defect and the downregulation of T3SSs in Salmonella; therefore, this link appears to be related to a more specific mechanism that involves at least BamB and BamD.


PLOS ONE | 2011

Two-component system RgfA/C activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B Streptococcus.

Rim Al Safadi; Laurent Mereghetti; Mazen Salloum; Marie-Frédérique Lartigue; Isabelle Virlogeux-Payant; Roland Quentin; Agnès Rosenau

Group B streptococcus (GBS) strains with the highest ability to bind to human fibrinogen belong to the highly invasive clonal complex (CC) 17. To investigate the fibrinogen-binding mechanisms of CC17 strains, we determined the prevalence of fibrinogen-binding genes (fbsA and fbsB), and fbs regulator genes (rogB encoding an fbsA activator, rovS encoding an fbsA repressor and rgf encoding a two-component system [TCS] whose role on fbs genes was not determined yet) in a collection of 134 strains representing the major CCs of the species. We showed that specific gene combinations were related to particular CCs; only CC17 strains contained the fbsA, fbsB, and rgf genes combination. Non polar rgfAC deletion mutants of three CC17 serotype III strains were constructed. They showed a 3.2- to 5.1-fold increase of fbsA transcripts, a 4.8- to 6.7-fold decrease of fbsB transcripts, and a 52% to 68% decreased fibrinogen-binding ability, demonstrating that the RgfA/RgfC TCS inhibits the fbsA gene and activates the fbsB gene. The relative contribution of the two fbs genes in fibrinogen-binding ability was determined by constructing isogenic fbsA, fbsB, deletion mutants of the three CC17 strains. The ability to bind to fibrinogen was reduced by 49% to 57% in ΔfbsA mutants, and by 78% to 80% in ΔfbsB mutants, suggesting that FbsB protein plays a greater role in the fibrinogen-binding ability of CC17 strains. Moreover, the relative transcription level of fbsB gene was 9.2- to 12.7-fold higher than that of fbsA gene for the three wild type strains. Fibrinogen-binding ability could be restored by plasmid-mediated expression of rgfAC, fbsA, and fbsB genes in the corresponding deletion mutants. Thus, our results demonstrate that a specific combination of fbs genes and fbs regulator genes account for the high fibrinogen-binding ability of CC17 strains that may participate to their enhanced invasiveness for neonates as compared to strains of other CCs.


Microbiology | 2011

Heterogeneity of type III secretion system (T3SS)- 1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types

Manon Rosselin; Nadia Abed; Isabelle Virlogeux-Payant; Elisabeth Bottreau; Pierre-Yves Sizaret; Philippe Velge; Agnès Wiedemann

Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.


International Journal of Medical Microbiology | 2008

TolC, but not AcrB, is involved in the invasiveness of multidrug-resistant Salmonella enterica serovar Typhimurium by increasing type III secretion system-1 expression

Isabelle Virlogeux-Payant; Sylvie Baucheron; Julien Pelet; Jérôme Trotereau; Elisabeth Bottreau; Philippe Velge; Axel Cloeckaert

The AcrAB-TolC efflux system is involved in multidrug and bile salt resistances. In addition, this pump has recently been suggested to increase the invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) into host cells in vitro and could therefore have an important clinical relevance for multidrug-resistant strains. The aim of this study was to investigate the role of the TolC outer membrane channel and the AcrB transporter in the interaction of multidrug-resistant S. Typhimurium strains with eukaryotic cells, especially in relation to the expression of the type III secretion system-1 (TTSS-1) required for Salmonella invasion. Deletion of tolC led to a reduced transcription of the Salmonella pathogenicity island-1 genes sipA, invF and hilA, demonstrating that all genes required for TTSS-1 biosynthesis are down-regulated in this mutant. Consequently, tolC mutants secreted smaller amounts of the TTSS-1 effector proteins SipA and SipC, and invasion tests performed with one mutant showed that it was significantly less able to invade HT-29 epithelial cells than its parental strain. This control seems specific to the TTSS-1 among the three TTSS of Salmonella as no down-regulation of expression of TTSS-2 or flagella was observed in this mutant. By contrast, acrB mutants behaved as their parents except that they secrete a slightly greater amount of SipA and SipC proteins. These data indicate that TolC but not AcrB mediates the uptake of multidrug-resistant S. Typhimurium into target host cells. Therefore, this role of TolC in the invasion of the intestine in addition to its role in bile salt resistance reinforces the interest of targeting TolC for fighting multidrug-resistant Salmonella.

Collaboration


Dive into the Isabelle Virlogeux-Payant's collaboration.

Top Co-Authors

Avatar

Philippe Velge

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Olivier Grépinet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Bottreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Trotereau

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Agnès Wiedemann

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Aurore Rossignol

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Jean-François Gibrat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvie M. Roche

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Annie Gendrault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Chevaleyre

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge