Isaiah T. Arkin
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isaiah T. Arkin.
Proteins | 2000
Tim J. Stevens; Isaiah T. Arkin
One may speculate that higher organisms require a proportionately greater abundance of membrane proteins within their genomes in order to furnish the requirements of differentiated cell types, compartmentalization, and intercellular signalling. With the recent availability of several complete prokaryotic genome sequences and sufficient progress in many eukaryotic genome sequencing projects, we seek to test this hypothesis. Using optimized hydropathy analysis of proteins in several, diverse proteomes, we show that organisms of the three domains of life—Eukarya, Eubacteria, and Archaea—have similar proportions of α‐helical membrane proteins within their genomes and that these are matched by the complexity of the aqueous components. Proteins 2000;39:417–420.
Plant Physiology | 2002
Georg Hh Borner; D. Janine Sherrier; Tim J. Stevens; Isaiah T. Arkin; Paul Dupree
Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.
Biochimica et Biophysica Acta | 1998
Isaiah T. Arkin; Axel T. Brunger
Statistical analyses were undertaken for putative transmembrane alpha-helices obtained from a database representing the subset of membrane proteins available in Swiss-Prot. The average length of a transmembrane alpha-helix was found to be 22-21 amino acids with a large variation around the mean. The transfer free energy from water to oil of a transmembrane alpha-helix in bitopic proteins, -48 kcal/mol, is higher than that in polytopic proteins, -39 kcal/mol, and is nearly identical to that obtained by assuming a random distribution of solely hydrophobic amino acids in the alpha-helix. The amino acid composition of hydrophobic residues is similar in bitopic and polytopic proteins. In contrast, the more polar the amino acids are, the less likely they are to be found in bitopic proteins compared to polytopic ones. This most likely reflects the ability of alpha-helical bundles to shield the polarity of residues from the hydrophobic bilayer. One half of all amino acids were distributed nonrandomly in both bitopic and polytopic proteins. A preference was found for tyrosine and tryptophan residues to be at the ends of transmembrane alpha-helices. Correlated distribution analysis of amino acid pairs indicated that most amino acids are independently distributed in each helix. Exceptions are cysteine, tyrosine, and tryptophan which appear to cluster closely to one another and glycines which are preferentially found on the same side of alpha-helices.
The EMBO Journal | 1994
Isaiah T. Arkin; Peter D. Adams; Kevin R. MacKenzie; Mark A. Lemmon; Axel T. Brunger; Donald M. Engelman
Phospholamban is a 52 amino acid calcium regulatory protein found as pentamers in cardiac SR membranes. The pentamers form through interactions between its transmembrane domains, and are stable in SDS. We have employed a saturation mutagenesis approach to study the detailed interactions between the transmembrane segments, using a chimeric protein construct in which staphylococcal nuclease (a monomeric soluble protein) is fused to the N‐terminus of phospholamban. The chimera forms pentamers observable in SDS‐PAGE, allowing the effects of mutations upon the oligomeric association to be determined by electrophoresis. The disruptive effects of amino acid substitutions in the transmembrane domain were classified as sensitive, moderately sensitive or insensitive. Residues of the same class lined up on faces of a 3.5 amino acids/turn helical projection, allowing the construction of a model of the interacting surfaces in which the helices are associated in a left‐handed pentameric coiled‐coil configuration. Molecular modeling simulations (to be described elsewhere in detail) confirm that the helices readily form a left‐handed coiled‐coil helical bundle and have yielded molecular models for the interacting surfaces, the best of which is identical to that predicted by the mutagenesis. Residues lining the pore show considerable structural sensitivity to mutation, indicating that care must be taken in interpreting the results of mutagenesis studies of channels. The cylindrical ion pore (minimal diameter of 2 A) appears to be defined largely by hydrophobic residues (I40, L43 and I47) with only two mildly polar elements contributed by sulfurs in residues C36 and M50.
Journal of Physical Chemistry B | 2008
Paul Maragakis; Kresten Lindorff-Larsen; Michael P. Eastwood; Ron O. Dror; John L. Klepeis; Isaiah T. Arkin; Morten Ø. Jensen; Huafeng Xu; Nikola Trbovic; and Arthur G. Palmer Iii; David E. Shaw
A molecular-level understanding of the function of a protein requires knowledge of both its structural and dynamic properties. NMR spectroscopy allows the measurement of generalized order parameters that provide an atomistic description of picosecond and nanosecond fluctuations in protein structure. Molecular dynamics (MD) simulation provides a complementary approach to the study of protein dynamics on similar time scales. Comparisons between NMR spectroscopy and MD simulations can be used to interpret experimental results and to improve the quality of simulation-related force fields and integration methods. However, apparent systematic discrepancies between order parameters extracted from simulations and experiments are common, particularly for elements of noncanonical secondary structure. In this paper, results from a 1.2 micros explicit solvent MD simulation of the protein ubiquitin are compared with previously determined backbone order parameters derived from NMR relaxation experiments [Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A. J. Am. Chem. Soc. 1995, 117, 12562-12566]. The simulation reveals fluctuations in three loop regions that occur on time scales comparable to or longer than that of the overall rotational diffusion of ubiquitin and whose effects would not be apparent in experimentally derived order parameters. A coupled analysis of internal and overall motion yields simulated order parameters substantially closer to the experimentally determined values than is the case for a conventional analysis of internal motion alone. Improved agreement between simulation and experiment also is encouraging from the viewpoint of assessing the accuracy of long MD simulations.
Protein Science | 2004
Eyal Vardy; Isaiah T. Arkin; Kay E. Gottschalk; H. Ronald Kaback; Shimon Schuldiner
The structures of membrane transporters are still mostly unsolved. Only recently, the first two high‐resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol‐3‐phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test this hypothesis, we generated models of two other members of the MFS, the Tn10‐encoded metal‐tetracycline/H+ antiporter (TetAB) and the rat vesicular monoamine transporter (rVMAT2). The models are based on the two MFS structures and on experimental data. The models for both proteins are in good agreement with the data available and support the notion of a shared fold for all MFS proteins.
Structure | 2009
Joshua Manor; Prabuddha Mukherjee; Yu-Shan Lin; Hadas Leonov; J. L. Skinner; Martin T. Zanni; Isaiah T. Arkin
The pH-controlled M2 protein from influenza A is a critical component of the virus and serves as a target for the aminoadamantane antiflu agents that block its H+ channel activity. To better understand its H+ gating mechanism, we investigated M2 in lipid bilayers with a new combination of IR spectroscopies and theory. Linear Fourier transform infrared (FTIR) spectroscopy was used to measure the precise orientation of the backbone carbonyl groups, and 2D infrared (IR) spectroscopy was used to identify channel-lining residues. At low pH (open state), our results match previously published solid-state NMR and X-ray structures remarkably well. However, at neutral pH when the channel is closed, our measurements indicate that a large conformational change occurs that is consistent with the transmembrane alpha-helices rotating by one amino acid register--a structural rearrangement not previously observed. The combination of simulations and isotope-labeled FTIR and 2D IR spectroscopies provides a noninvasive means of interrogating the structures of membrane proteins in general and ion channels in particular.
Biophysical Journal | 1999
Andreas Kukol; Isaiah T. Arkin
The recently developed method of site-directed Fourier transform infrared dichroism for obtaining orientational constraints of oriented polymers is applied here to the transmembrane domain of the vpu protein from the human immunodeficiency virus type 1 (HIV-1). The infrared spectra of the 31-residue-long vpu peptide reconstituted in lipid vesicles reveal a predominantly alpha-helical structure. The infrared dichroism data of the (13)C-labeled peptide yielded a helix tilt beta = (6.5 +/- 1.7) degrees from the membrane normal. The rotational pitch angle omega, defined as zero for a residue located in the direction of the helix tilt, is omega = (283 +/- 11) degrees for the (13)C labels Val(13)/Val(20) and omega = (23 +/- 11) degrees for the (13)C labels Ala(14)/Val(21). A global molecular dynamics search protocol restraining the helix tilt to the experimental value was performed for oligomers of four, five, and six subunits. From 288 structures for each oligomer, a left-handed pentameric coiled coil was obtained, which best fits the experimental data. The structure reveals a pore occluded by Trp residues at the intracellular end of the transmembrane domain.
Protein Science | 2009
Dieter Langosch; Isaiah T. Arkin
Within 1 or 2 decades, the reputation of membrane‐spanning α‐helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein–protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small‐scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come.
Proteins | 1999
Tim J. Stevens; Isaiah T. Arkin
One of the central paradigms of structural biology is that membrane proteins are “inside‐out” proteins, in that they have a core of polar residues surrounded by apolar residues. This is the reverse of the characteristics found in water‐soluble proteins. We have decided to test this paradigm, now that sufficient numbers of transmembrane α‐helical structures are accessible to statistical analysis. We have analyzed the correlation between accessibility and hydrophobicity of both individual residues and complete helices. Our analyses reveal that hydrophobicity of residues in a transmembrane helical bundle does not correlate with any preferred location and that the hydrophilic vector of a helix is a poor indicator of the solvent exposed face of a helix. Neither polar nor hydrophobic residues show any bias for the exterior or the interior of a transmembrane domain. As a control, analysis of water‐soluble helical bundles performed in a similar manner has yielded clear correlations between hydrophobicity and accessibility. We therefore conclude that, based on the data set used, membrane proteins as “inside‐out” proteins is an unfounded notion, suggesting that packing of α‐helices in membranes is better understood by maximization of van der Waals forces, rather than by a general segregation of hydrophobicities driven by lipid exclusion. Proteins 1999;36:135–143.