Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isao Asaka is active.

Publication


Featured researches published by Isao Asaka.


Science Translational Medicine | 2012

Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells

Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa

Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.


PLOS ONE | 2011

Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease

Naoki Yahata; Masashi Asai; Shiho Kitaoka; Kazutoshi Takahashi; Isao Asaka; Hiroyuki Hioki; Takeshi Kaneko; Kei Maruyama; Takaomi C. Saido; Tatsutoshi Nakahata; Takashi Asada; Shinya Yamanaka; Nobuhisa Iwata; Haruhisa Inoue

Background Alzheimers disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. Methodology/Principal Findings We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. Conclusions/Significance These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.


Diabetologia | 2012

Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation

Junji Fujikura; Kazuwa Nakao; Masakatsu Sone; Michio Noguchi; Eisaku Mori; Masaki Naito; Daisuke Taura; Mariko Harada-Shiba; Ichiro Kishimoto; Akira Watanabe; Isao Asaka; Kiminori Hosoda

Aims/hypothesisThe aim of this study was to generate induced pluripotent stem (iPS) cells from patients with mitochondrial DNA (mtDNA) mutation.MethodsSkin biopsies were obtained from two diabetic patients with mtDNA A3243G mutation. The fibroblasts thus obtained were infected with retroviruses encoding OCT4 (also known as POU5F1), SOX2, c-MYC (also known as MYC) and KLF4. The stem cell characteristics were investigated and the mtDNA mutation frequencies evaluated by Invader assay.ResultsFrom the two diabetic patients we isolated four and ten putative mitochondrial disease-specific iPS (Mt-iPS) clones, respectively. Mt-iPS cells were cytogenetically normal and positive for alkaline phosphatase activity, with the pluripotent stem cell markers being detectable by immunocytochemistry. The cytosine guanine dinucleotide islands in the promoter regions of OCT4 and NANOG were highly unmethylated, indicating epigenetic reprogramming to pluripotency. Mt-iPS clones were able to differentiate into derivatives of all three germ layers in vitro and in vivo. The Mt-iPS cells exhibited a bimodal degree of mutation heteroplasmy. The mutation frequencies decreased to an undetectable level in six of 14 clones, while the others showed several-fold increases in mutation frequencies (51–87%) compared with those in the original fibroblasts (18–24%). During serial cell culture passage and after differentiation, no recurrence of the mutation or no significant changes in the levels of heteroplasmy were seen.Conclusions/interpretationiPS cells were successfully generated from patients with the mtDNA A3243G mutation. Mutation-rich, stable Mt-iPS cells may be a suitable source of cells for human mitochondrial disease modelling in vitro. Mutation-free iPS cells could provide an unlimited, disease-free supply of cells for autologous transplantation therapy.


Biochemical and Biophysical Research Communications | 2013

Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients.

Toshiaki Hitomi; Toshiyuki Habu; Hatasu Kobayashi; Hiroko Okuda; Kouji H. Harada; Kenji Osafune; Daisuke Taura; Masakatsu Sone; Isao Asaka; Tomonaga Ameku; Akira Watanabe; Tomoko Kasahara; Fumihiko Shiota; Hirokuni Hashikata; Yasushi Takagi; Daisuke Morito; Susumu Miyamoto; Kazuwa Nakao; Akio Koizumi

Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p<0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p<0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.


Phytochemistry | 1987

Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum ☆

Masao Hirotani; Isao Asaka; Chieko Ino; Tsutomu Furuya; Motoo Shiro

Abstract Seven new triterpenoids, ganoderic acid T, ganoderic acid S, ganoderic acid R, ganoderic acid P, ganoderic acid Q, ganoderic acid 0, 7-O-methyl-ganoderic acid 0 and a known ergosterol derivative, ergosta-4,7,22-triene-3,6-dione were isolated from the cultured mycelium of Ganoderma lucidum. The structure of the first compound was determined using spectroscopic and X-ray analysis, and the structures of the other compounds were elucidated by spectroscopic data.


Orphanet Journal of Rare Diseases | 2013

Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation

Yoshihisa Matsumoto; Yohei Hayashi; Christopher R. Schlieve; Makoto Ikeya; Hannah Kim; Trieu Nguyen; Salma Sami; Shiro Baba; Emilie Barruet; Akira Nasu; Isao Asaka; Takanobu Otsuka; Shinya Yamanaka; Bruce R. Conklin; Junya Toguchida; Edward C. Hsiao

BackgroundAbnormal activation of endochondral bone formation in soft tissues causes significant medical diseases associated with disability and pain. Hyperactive mutations in the bone morphogenetic protein (BMP) type 1 receptor ACVR1 lead to fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterized by progressive ossification in soft tissues. However, the specific cellular mechanisms are unclear. In addition, the difficulty obtaining tissue samples from FOP patients and the limitations in mouse models of FOP hamper our ability to dissect the pathogenesis of FOP.MethodsTo address these challenges and develop a “disease model in a dish”, we created human induced pluripotent stem cells (iPS cells) derived from normal and FOP dermal fibroblasts by two separate methods, retroviral integration or integration-free episomal vectors. We tested if the ability to contribute to different steps of endochondral bone formation was different in FOP vs. control iPS cells.ResultsRemarkably, FOP iPS cells showed increased mineralization and enhanced chondrogenesis in vitro. The mineralization phenotypes could be suppressed with a small-molecule inhibitor of BMP signaling, DMH1. Our results indicate that the FOP ACVR1 R206H mutation favors chondrogenesis and increases mineral deposition in vitro.ConclusionsOur findings establish a FOP disease cell model for in vitro experimentation and provide a proof-of-concept for using human iPS cell models to understand human skeletal disorders.


Blood | 2012

Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery

Takayuki Tanaka; Kazutoshi Takahashi; Mayu Yamane; Shota Tomida; Saori Nakamura; Koichi Oshima; Akira Niwa; Ryuta Nishikomori; Naotomo Kambe; Hideki Hara; Masao Mitsuyama; Nobuhiro Morone; John E. Heuser; Takuya Yamamoto; Akira Watanabe; Aiko Sato-Otsubo; Seishi Ogawa; Isao Asaka; Toshio Heike; Shinya Yamanaka; Tatsutoshi Nakahata; Megumu Saito

Chronic infantile neurologic cutaneous and articular (CINCA) syndrome is an IL-1-driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here we report the generation of NLRP3-mutant and nonmutant-induced pluripotent stem cell (iPSC) lines from 2 CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs). We found that mutant cells are predominantly responsible for the pathogenesis in these mosaic patients because only mutant iPS-MPs showed the disease relevant phenotype of abnormal IL-1β secretion. We also confirmed that the existing anti-inflammatory compounds inhibited the abnormal IL-1β secretion, indicating that mutant iPS-MPs are applicable for drug screening for CINCA syndrome and other NLRP3-related inflammatory conditions. Our results illustrate that patient-derived iPSCs are useful for dissecting somatic mosaicism and that NLRP3-mutant iPSCs can provide a valuable platform for drug discovery for multiple NLRP3-related disorders.


Biotechnology Letters | 1993

Production of ginsenoside saponins by culturing ginseng (Panax ginseng) embryogenic tissues in bioreactors

Isao Asaka; Ichio; Masao Hirotani; Yoshihisa Asada; Tsutomu Furuya

SummaryGinseng (Panax ginseng) embryogenic tissues were cultured in three types of reactors and the ginsenoside productivities in these tissues were compared. As a result, the saponin productivity was the best when an airlift reactor was used, and more than twice of that when a paddle or internal turbine reactor was used. The tissues grew 9 fold during 42 days, and the ginsenoside pattern resembled that of ginseng leaves.


PLOS ONE | 2013

Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions.

Masakatsu Yanagimachi; Akira Niwa; Takayuki Tanaka; Fumiko Honda-Ozaki; Seiko Nishimoto; Yuuki Murata; Takahiro Yasumi; Jun Ito; Shota Tomida; Koichi Oshima; Isao Asaka; Hiroaki Goto; Toshio Heike; Tatsutoshi Nakahata; Megumu Saito

Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.


Biochemical and Biophysical Research Communications | 2013

The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality.

Toshiaki Hitomi; Toshiyuki Habu; Hatasu Kobayashi; Hiroko Okuda; Kouji H. Harada; Kenji Osafune; Daisuke Taura; Masakatsu Sone; Isao Asaka; Tomonaga Ameku; Akira Watanabe; Tomoko Kasahara; Fumihiko Shiota; Hirokuni Hashikata; Yasushi Takagi; Daisuke Morito; Susumu Miyamoto; Kazuwa Nakao; Akio Koizumi

Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n=3, 61.0 ± 8.2%) compared with wild-type subjects (n=6, 13.1 ± 7.7%; p<0.01). Aneuploidy was observed more frequently in fibroblasts (p<0.01) and induced pluripotent stem cells (iPSCs) (p<0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p<0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p<0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

Collaboration


Dive into the Isao Asaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Niwa

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge