Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isao T. Tokuda is active.

Publication


Featured researches published by Isao T. Tokuda.


Journal of the Acoustical Society of America | 2002

Nonlinear analysis of irregular animal vocalizations

Isao T. Tokuda; Tobias Riede; Jürgen Neubauer; Michael J. Owren; Hanspeter Herzel

Animal vocalizations range from almost periodic vocal-fold vibration to completely atonal turbulent noise. Between these two extremes, a variety of nonlinear dynamics such as limit cycles, subharmonics, biphonation, and chaotic episodes have been recently observed. These observations imply possible functional roles of nonlinear dynamics in animal acoustic communication. Nonlinear dynamics may also provide insight into the degree to which detailed features of vocalizations are under close neural control, as opposed to more directly reflecting biomechanical properties of the vibrating vocal folds themselves. So far, nonlinear dynamical structures of animal voices have been mainly studied with spectrograms. In this study, the deterministic versus stochastic (DVS) prediction technique was used to quantify the amount of nonlinearity in three animal vocalizations: macaque screams, piglet screams, and dog barks. Results showed that in vocalizations with pronounced harmonic components (adult macaque screams, certain piglet screams, and dog barks), deterministic nonlinear prediction was clearly more powerful than stochastic linear prediction. The difference, termed low-dimensional nonlinearity measure (LNM), indicates the presence of a low-dimensional attractor. In highly irregular signals such as juvenile macaque screams, piglet screams, and some dog barks, the detectable amount of nonlinearity was comparatively small. Analyzing 120 samples of dog barks, it was further shown that the harmonic-to-noise ratio (HNR) was positively correlated with LNM. It is concluded that nonlinear analysis is primarily useful in animal vocalizations with strong harmonic components (including subharmonics and biphonation) or low-dimensional chaos.


Neural Networks | 1997

Global bifurcation structure of chaotic neural networks and its application to traveling salesman problems

Isao T. Tokuda; Tomomasa Nagashima; Kazuyuki Aihara

Abstract This paper studies global bifurcation structure of the chaotic neural networks applied to solve the traveling salesman problem (TSP). The bifurcation analysis clarifies the dynamical basis of the chaotic neuro-dynamics which itinerates a variety of network states associated with possible solutions of TSP and efficiently ‘searches’ for the optimum or near-optimum solutions. By following the detailed merging process of chaotic attractors via crises, we find that the crisis-induced intermittent switches among the ruins of the previous localized chaotic attractors underly the ‘chaotic search’ for TSP solutions. On the basis of the present study, efficiency of the ‘chaotic search’ to optimization problems is discussed and a guideline is provided for tuning the bifurcation parameter value which gives rise to efficient ‘chaotic search’.


Journal of the Acoustical Society of America | 2008

Mammalian laryngseal air sacs add variability to the vocal tract impedance: Physical and computational modeling

Tobias Riede; Isao T. Tokuda; Jacob B. Munger; Scott L. Thomson

Cavities branching off the main vocal tract are ubiquitous in nonhumans. Mammalian air sacs exist in human relatives, including all four great apes, but only a substantially reduced version exists in humans. The present paper focuses on acoustical functions of the air sacs. The hypotheses are investigated on whether the air sacs affect amplitude of utterances and/or position of formants. A multilayer synthetic model of the vocal folds coupled with a vocal tract model was utilized. As an air sac model, four configurations were considered: open and closed uniform tube-like side branches, a rigid cavity, and an inflatable cavity. Results suggest that some air sac configurations can enhance the sound level. Furthermore, an air sac model introduces one or more additional resonance frequencies, shifting formants of the main vocal tract to some extent but not as strongly as previously suggested. In addition, dynamic range of vocalization can be extended by the air sacs. A new finding is also an increased variability of the vocal tract impedance, leading to strong nonlinear source-filter interaction effects. The experiments demonstrated that air-sac-like structures can destabilize the sound source. The results were validated by a transmission line computational model.


Journal of the Acoustical Society of America | 2007

Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.

Isao T. Tokuda; Jaromír Horáček; Jan G. Švec; Hanspeter Herzel

Voice instabilities were studied using excised human larynx experiments and biomechanical modeling. With a controlled elongation of the vocal folds, the experiments showed registers with chest-like and falsetto-like vibrations. Observed instabilities included abrupt jumps between the two registers exhibiting hysteresis, aphonic episodes, subharmonics, and chaos near the register transitions. In order to model these phenomena, a three-mass model was constructed by adding a third mass on top of the simplified two-mass model. Simulation studies showed that the three-mass model can vibrate in both chest-like and falsetto-like patterns. Variation of tension parameters which mimic activities of laryngeal muscles could induce transitions between both registers. For reduced prephonatory areas and damping constants, extended coexistence of chest and falsetto registers was found, in agreement with experimental data. Subharmonics and deterministic chaos were observed close to transitions between the registers. It is concluded that the abrupt changes between chest and falsetto registers can be understood as shifts in dominance of eigenmodes of the vocal folds.


Journal of the Acoustical Society of America | 2010

Biomechanical modeling of register transitions and the role of vocal tract resonators.

Isao T. Tokuda; Marco Zemke; Malte Kob; Hanspeter Herzel

Biomechanical modeling and bifurcation theory are applied to study phonation onset and register transition. A four-mass body-cover model with a smooth geometry is introduced to reproduce characteristic features of chest and falsetto registers. Sub- and supraglottal resonances are modeled using a wave-reflection model. Simulations for increasing and decreasing subglottal pressure reveal that the phonation onset exhibits amplitude jumps and hysteresis referring to a subcritical Hopf bifurcation. The onset pressure is reduced due to vocal tract resonances. Hysteresis is observed also for the voice breaks at the chest-falsetto transition. Varying the length of the subglottal resonator has only minor effects on this register transition. Contrarily, supraglottal resonances have a strong effect on the pitch, at which the chest-falsetto transition is found. Experiment of glissando singing shows that the supraglottis has indeed an influence on the register transition.


Current Bioinformatics | 2011

Mathematical Models and Numerical Schemes for the Simulation of Human Phonation

Fariborz Alipour; Christoph Brücker; Douglas D. Cook; Andreas Gommel; Manfred Kaltenbacher; Willy Mattheus; Luc Mongeau; Eric A. Nauman; Rüdiger Schwarze; Isao T. Tokuda; S. Zörner

Acoustic data has long been harvested in fundamental voice investigations since it is easily obtained using a microphone. However, acoustic signals alone do not reveal much about the complex interplay between sound waves, structural surface waves, mechanical vibrations, and fluid flow involved in phonation. Available high speed imaging techniques have over the past ten years provided a wealth of information about the mechanical deformation of the superior surface of the larynx during phonation. Time-resolved images of the inner structure of the deformable soft tissues are not yet feasible because of low temporal resolution (MRI and ultrasound) and x-ray dose-related hazards (CT and standard x- ray). One possible approach to circumvent these challenges is to use mathematical models that reproduce observable behavior such as phonation frequency, closed quotient, onset pressure, jitter, shimmer, radiated sound pressure, and airflow. Mathematical models of phonation range in complexity from systems with relatively small degrees of freedom (multi-mass models) to models based on partial differential equations (PDEs) mostly solved by finite element (FE) methods resulting in millions of degrees-of-freedom. We will provide an overview about the current state of mathematical models for the human phonation process, since they have served as valuable tools for providing insight into the basic mechanisms of phonation and may eventually be of sufficient detail and accuracy to allow surgical planning, diagnostics, and rehabilitation evaluations on an individual basis. Furthermore, we will also critically discuss these models w.r.t. the used geometry, boundary conditions, material properties, their verification, and reproducibility.


International Journal of Bifurcation and Chaos | 1996

A SIMPLE GEOMETRICAL STRUCTURE UNDERLYING SPEECH SIGNALS OF THE JAPANESE VOWEL /a/

Isao T. Tokuda; Ryuji Tokunaga; Kazuyuki Aihara

An automatic milking machine is described which includes a pneumatic circuit for controlling the same and apparatus for automatically cleansing the interior of a cow milking teat cup cluster between the milking of successive cows therewith. The cleansing apparatus includes an arrangement for automatically disconnecting the teat cup cluster from the milk circuit between cows, and then successively passing therethrough various liquids which cleanse the same.


Journal of the Acoustical Society of America | 2005

Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs

Tobias Riede; Brian R. Mitchell; Isao T. Tokuda; Michael J. Owren

Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.


Journal of the Acoustical Society of America | 2001

Surrogate analysis for detecting nonlinear dynamics in normal vowels

Isao T. Tokuda; Takaya Miyano; Kazuyuki Aihara

Normal vowels are known to have irregularities in the pitch-to-pitch variation which is quite important for speech signals to be perceived as natural human sound. Such pitch-to-pitch variation of vowels is studied in the light of nonlinear dynamics. For the analysis, five normal vowels recorded from three male and two female subjects are exploited, where the vowel signals are shown to have normal levels of the pitch-to-pitch variation. First, by the false nearest-neighbor analysis, nonlinear dynamics of the vowels are shown to be well analyzed by using a relatively low-dimensional reconstructing dimension of 4 < or = d < or = 7. Then, we further studied nonlinear dynamics of the vowels by spike-and-wave surrogate analysis. The results imply that there exists nonlinear dynamical correlation between one pitch-waveform pattern to another in the vowel signals. On the basis of the analysis results, applicability of the nonlinear prediction technique to vowel synthesis is discussed.


PLOS ONE | 2012

Circadian Regulation of Food-Anticipatory Activity in Molecular Clock–Deficient Mice

Nana N. Takasu; Gen Kurosawa; Isao T. Tokuda; Atsushi Mochizuki; Takeshi Todo; Wataru Nakamura

In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1−/− mice, which are known to be a “short-period mutant,” entrained to a shorter period of feeding cycles than did Cry2−/− mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1 −/− mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

Collaboration


Dive into the Isao T. Tokuda's collaboration.

Top Co-Authors

Avatar

Fumihiko Asano

Japan Advanced Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomomasa Nagashima

Muroran Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanspeter Herzel

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daiki Tanaka

Japan Advanced Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge