Ishwar S. Singh
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ishwar S. Singh.
Infection and Immunity | 2000
Qinqqi Jiang; Alan S. Cross; Ishwar S. Singh; T. Timothy Chen; Rose M. Viscardi; Jeffrey D. Hasday
ABSTRACT Fever, a nonspecific acute-phase response, has been associated with improved survival and shortened disease duration in infections, but the mechanisms of these beneficial responses are poorly understood. We previously reported that increasing core temperature of bacterial endotoxin (LPS)-challenged mice to the normal febrile range modified expression of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-6, three cytokines critical to mounting an initial defense against microbial pathogens, but survival was not improved in the warmer animals. We speculated that our inability to show a survival benefit of optimized cytokine expression in the warmer animals reflected our use of LPS, a nonreplicating agonist, rather than an infection with viable pathogens. The objective of this study was to determine if increasing murine core temperature altered cytokine expression and improved survival in an experimental bacterial peritonitis model. We showed that housing mice at 35.5°C rather than 23°C increased core temperature from 36.5 to 37.5°C to 39.2 to 39.7°C, suppressed plasma TNF-α expression for the initial 48 h, delayed gamma interferon expression, improved survival, and reduced the bacterial load in mice infected with Klebsiella pneumoniae peritonitis. We showed that the reduced bacterial load was not caused by a direct effect on bacterial proliferation and probably reflected enhanced host defense. These data suggest that the increase in core temperature that occurs during bacterial infections is essential for optimal antimicrobial host defense.
Journal of Biological Chemistry | 2002
Ishwar S. Singh; Ju-Ren He; Stuart Calderwood; Jeffrey D. Hasday
Tumor necrosis factor-α (TNFα) is a pivotal early mediator of host defenses that is essential for survival in infections. We previously reported that exposing macrophages to febrile range temperatures (FRT) (38.5–40 °C) markedly attenuates TNFα expression by causing abrupt and premature cessation of transcription. We showed that this inhibitory effect of FRT is mediated by an alternatively activated repressor form of heat shock factor 1 (HSF-1) and that a fragment of the TNFα gene comprising a minimal 85-nucleotide (nt) proximal promoter and the 138-nt 5′-untranslated region (UTR) was sufficient for mediating this effect. In the present study we have used an electrophoretic mobility shift assay (EMSA) to identify a high affinity binding site for HSF-1 in the 5′-UTR of the TNFα gene and have used a chromosome immunoprecipitation assay to show that HSF-1 binds to this region of the endogenous TNFα gene. Mutational inactivation of this site blocks the inhibitory effect of overexpressed HSF-1 on activity of the minimal TNFα promoter (−85/+138) in Raw 264.7 murine macrophages, identifying this site as an HSF-1-dependent repressor. However, the same mutation fails to block repression of a full-length (−1080/+138) TNFα promoter construct by HSF-1 overexpression, and HSF-1 binds to upstream sequences in the regions −1080/−845, −533/−196, and −326/−39 nt in EMSA, suggesting that additional HSF-1-dependent repressor elements are present upstream of the minimal −85-nt promoter. Furthermore, although mutation of the HSF-1 binding site in the minimalTNFα promoter construct abrogates HSF-1-mediated repression, the same mutation fails to abrogate repression of this construct by high levels of HSF-1 overexpression or exposure to 39.5 °C. This suggests that HSF-1 might repress TNFα transcription through redundant mechanisms, some of which might not require high affinity binding of HSF-1.
Cell Stress & Chaperones | 2000
Jeffrey D. Hasday; Ishwar S. Singh
Abstract The heat shock response is an ancient and highly conserved process that is essential for surviving environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review studies showing that fever is beneficial in the infected host. We show that core temperatures achieved during fever can activate the heat shock response and discuss some of the biochemical consequences of such an effect. We present data suggesting 4 possible mechanisms by which fever might confer protection: (1) directly killing or inhibiting growth of pathogens; (2) inducing cytoprotective heat shock proteins (Hsps) in host cells; (3) inducing expression of pathogen Hsps, an activator of host defenses; and (4) modifying and orchestrating host defenses. Two of these mechanisms directly involve the heat shock response. We describe how heat shock factor-1, the predominant heat-induced transcriptional enhancer not only activates transcription of Hsps but also regulates expression of pivotal cytokines and early response genes. The relationship between fever and the heat shock response is an illuminating example of how a more recently evolved response might exploit preexisting biochemical pathways for a new function.
Journal of Interferon and Cytokine Research | 2000
Karen D. Fairchild; Rose M. Viscardi; Lisa Hester; Ishwar S. Singh; Jeffrey D. Hasday
We have shown previously that febrile range temperatures modify cytokine production by adult macrophages. In this study, we compared the effects of moderate hyperthermia and hypothermia on the kinetics of lipopolysaccharide (LPS)-induced cytokine expression in monocytes and macrophages of newborns and adults. During culture at 40 degrees C, the initial rates of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) secretion were preserved, but the duration of secretion was shorter than the duration at 37 degrees C. TNF-alpha and IL1-beta concentrations in 24-h 40 degrees C culture supernatants were reduced 18%-50%. IL-6 concentration in 24-h 40 degrees C cultures was reduced 26%-29% in all cells except adult macrophages. At 32 degrees C, changes in early (2 h) and sustained (24 h) cytokine expression were reversed compared with those caused by hyperthermia. Culturing adult macrophages at 32 degrees C blunted early secretion of TNF-alpha and IL-6 by 69% and 65%, respectively, and increased TNF-alpha concentration at 24 h by 48% compared with levels at 37 degrees C. In adult monocytes cultured at 32 degrees C, early IL-6 and IL-1 beta secretion was decreased 64% and 51%, respectively. We speculate that the burst/suppression cytokine profile at febrile temperatures might enhance early activation of host defenses and prevent prolonged exposure to potentially cytotoxic cytokines. Hypothermia, on the other hand, may worsen outcome in infections by delaying and prolonging cytokine production.
Journal of Neuroimmunology | 2009
Tapas K. Makar; Christopher T. Bever; Ishwar S. Singh; Walter Royal; Surasri Nandan Sahu; Tushar P. Sura; Shireen Sultana; Karna T. Sura; Niraj Patel; Suhayl Dhib-Jalbut; David Trisler
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is neuroprotective in animal models of neurodegenerative diseases. However, BDNF has a short half-life and its efficacy in the central nervous system (CNS), when delivered peripherally, is limited due to the blood-brain barrier (BBB). We have developed a means of delivering BDNF into the CNS using genetically engineered bone marrow stem cells (BMSCs) as a vehicle, and have explored the clinical effects of BDNF on outcomes in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). BDNF-engineered-BMSCs were transplanted (i.v.) into irradiated 2-week-old SJL/J female mice. Eight weeks after transplantation, mice were immunized with a peptide of proteolipid protein (PLP(139-151)). Mice, which had received BDNFengineered BMSCs, showed a significant delay in EAE onset and a reduction in overall clinical severity compared to mice receiving BMSC transfected with an empty vector lacking the BDNF gene. In addition, pathological examination showed that BDNF delivery reduced demyelination and increased remyelination. Inhibition of pro-inflammatory cytokines TNF-alpha and IFN-gamma and enhanced expression of the antiinflammatory cytokines IL-4, IL-10, and IL-11 were found in the CNS tissues of the BDNF transplanted group. These results support the use of BMSCs as vehicles to deliver BDNF into the CNS of EAE animals. This is a potentially novel therapeutic approach that might be used to deliver BDNF gene or genes for other therapeutic proteins into the CNS in MS or in other diseases of the CNS in which accessibility of therapeutic proteins is limited due to the BBB.
Journal of Immunology | 2005
Penelope Rice; Erica Martin; Ju-Ren He; Mariah Frank; Louis J. DeTolla; Lisa Hester; Timothy O’Neill; Cheu Manka; Ivor J. Benjamin; Ashish Nagarsekar; Ishwar S. Singh; Jeffrey D. Hasday
We previously demonstrated that exposure to febrile-range hyperthermia (FRH) accelerates pathogen clearance and increases survival in murine experimental Klebsiella pneumoniae peritonitis. However, FRH accelerates lethal lung injury in a mouse model of pulmonary oxygen toxicity, suggesting that the lung may be particularly susceptible to injurious effects of FRH. In the present study, we tested the hypothesis that, in contrast with the salutary effect of FRH in Gram-negative peritonitis, FRH would be detrimental in multilobar Gram-negative pneumonia. Using a conscious, temperature-clamped mouse model and intratracheal inoculation with K. pneumoniae Caroli strain, we showed that FRH tended to reduce survival despite reducing the 3 day-postinoculation pulmonary pathogen burden by 400-fold. We showed that antibiotic treatment rescued the euthermic mice, but did not reduce lethality in the FRH mice. Using an intratracheal bacterial endotoxin LPS challenge model, we found that the reduced survival in FRH-treated mice was accompanied by increased pulmonary vascular endothelial injury, enhanced pulmonary accumulation of neutrophils, increased levels of IL-1β, MIP-2/CXCL213, GM-CSF, and KC/CXCL1 in the bronchoalveolar lavage fluid, and bronchiolar epithelial necrosis. These results suggest that FRH enhances innate host defense against infection, in part, by augmenting polymorphonuclear cell delivery to the site of infection. The ultimate effect of FRH is determined by the balance between accelerated pathogen clearance and collateral tissue injury, which is determined, in part, by the site of infection.
Journal of Biological Chemistry | 2002
Bysani Chandrasekar; Peter C. Melby; Henry M. Sarau; Muthuswamy Raveendran; Rao P. Perla; Frederica Marelli-Berg; Nickolai O. Dulin; Ishwar S. Singh
It is well established that cytokines can induce the production of chemokines, but the role of chemokines in the regulation of cytokine expression has not been fully investigated. Exposure of rat cardiac-derived endothelial cells (CDEC) to lipopolysaccharide-induced CXC chemokine (LIX), and to a lesser extent to KC and MIP-2, activated NF-κB and induced κB-driven promoter activity. LIX did not activate Oct-1. LIX-induced interleukin-1β and tumor necrosis factor-α promoter activity, and up-regulated mRNA expression. Increased transcription and mRNA stability both contributed to cytokine expression. LIX-mediated cytokine gene transcription was inhibited by interleukin-10. Transient overexpression of kinase-deficient NF-κB-inducing kinase (NIK) and IκB kinase (IKK), and dominant negative IκB significantly inhibited LIX-mediated NF-κB activation in rat CDEC. Inhibition of Gi protein-coupled signal transduction, poly(ADP-ribose) polymerase, phosphatidylinositol 3-kinase, and the 26 S proteasome significantly inhibited LIX-mediated NF-κB activation and cytokine gene transcription. Blocking CXCR2 attenuated LIX-mediated κB activation and κB-driven promoter activity in rat CDEC that express both CXCR1 and -2, and abrogated its activation in mouse CDEC that express only CXCR2. These results indicate that LIX activates NF-κB and induces κB-responsive proinflammatory cytokines via either CXCR1 or CXCR2, and involved phosphatidylinositol 3-kinase, NIK, IKK, and IκB. Thus, in addition to attracting and activating neutrophils, the ELR+ CXC chemokines amplify the inflammatory cascade, stimulating local production of cytokines that have negative inotropic and proapoptotic effects.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999
Qingqi Jiang; Louis J. DeTolla; Ishwar S. Singh; Lisa Gatdula; Bridget Fitzgerald; Nico van Rooijen; Alan S. Cross; Jeffrey D. Hasday
Fever is a phylogenetically ancient response that is associated with improved survival in acute infections. In endothermic animals, fever is induced by a set of pyrogenic cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1, and IL-6] that are also essential for survival in acute infections. We studied the influence of core temperature on cytokine expression using an anesthetized mouse model in which core temperature was adjusted by immersion in water baths. We showed that raising core temperature from basal (36.5-37.5 degrees C) to febrile (39.5-40 degrees C) levels increased peak plasma TNF-alpha and IL-6 levels by 4.1- and 2. 7-fold, respectively, and changed the kinetics of IL-1beta expression in response to lipopolysaccharide challenge. TNF-alpha levels were increased predominantly in liver, IL-1beta levels were higher in lung, and IL-6 levels were widely increased in multiple organs in the warmer mice. This demonstrates that the thermal component of fever may directly contribute to shaping the host response by regulating the timing, magnitude, and tissue distribution of cytokine generation during the acute-phase response.
American Journal of Pathology | 2003
Jeffrey D. Hasday; Allen Garrison; Ishwar S. Singh; Theodore J. Standiford; Garrettson S. Ellis; Srinivas Rao; Ju Ren He; Penny Rice; Mariah Frank; Simeon E. Goldblum; Rose M. Viscardi
Febrile-range hyperthermia (FRH) improves survival in experimental infections by accelerating pathogen clearance, but may also increase collateral tissue injury. We hypothesized that FRH would worsen the outcome of inflammation stimulated by a non-replicating agonist and tested this hypothesis in a murine model of pulmonary oxygen toxicity. Using a conscious, temperature-controlled mouse model, we showed that maintaining a core temperature at FRH (39 degrees C to 40 degrees C) rather than at euthermic levels (36.5 degrees C to 37 degrees C) during hyperoxia exposure accelerated lethal pulmonary vascular endothelial injury, reduced the inspired oxygen threshold for lethality, induced expression of granulocyte-colony stimulating factor, and expanded the circulating neutrophil pool. In these same mice, FRH augmented pulmonary expression of the ELR(+) CXC chemokines, KC and LPS-induced CXC chemokine, enhanced recruitment of neutrophils, and changed the histological pattern of lung injury to a neutrophilic interstitial pneumonitis. Immunoblockade of CXC receptor-2 abrogated neutrophil recruitment, reduced pulmonary vascular injury, and delayed death. These combined data demonstrate that FRH may enlist distinct mediators and effector cells to profoundly shift the host response to a defined injurious stimulus, in part by augmenting delivery of neutrophils to sites of inflammation, such as may occur in infections. In certain conditions, such as in the hyperoxic lung, this process may be deleterious.
American Journal of Respiratory Cell and Molecular Biology | 2008
Ishwar S. Singh; Aditi Gupta; Ashish Nagarsekar; Zachary A. Cooper; Cheu Manka; Lisa Hester; Ivor J. Benjamin; Ju Ren He; Jeffrey D. Hasday
The heat shock (HS) response is a phylogenetically ancient cellular response to stress, including heat, that shifts gene expression to a set of conserved HS protein (HSP) genes. In our earlier studies, febrile-range hyperthermia (FRH) not only activated HSP gene expression, but also increased expression of CXC chemokines in mice, leading us to hypothesize that the CXC chemokine family of genes might be HS-responsive. To address this hypothesis we analyzed the effect of HS on the expression of IL-8/CXCL-8, a member of the human CXC family of ELR(+) chemokines. HS markedly enhanced TNF-alpha-induced IL-8 secretion in human A549 respiratory epithelial-like cells and in primary human small airway epithelial cells. IL-8 mRNA was also up-regulated by HS, but the stability of IL-8 mRNA was not affected. TNF-alpha-induced reporter activity of an IL-8 promoter construct IL8(-1471/+44)-luc stably transfected in A549 cells was also enhanced by HS. Electrophoretic mobility and chromatin immunoprecipitation assays showed that the stress-activated transcription factor heat shock factor-1 (HSF-1) binds to at least two putative heat shock response elements (HSE) present in the IL-8 promoter. Deletional reporter constructs lacking either one or both of these sites showed reduced HS responsiveness. Furthermore, depletion of HSF-1 using siRNA also reduced the effects HS on TNF-alpha-induced IL-8 expression, demonstrating that HSF-1 could also act to regulate IL-8 gene transcription. We speculate that during evolution the CXC chemokine genes may have co-opted elements of the HS response to amplify their expression and enhance neutrophil delivery during febrile illnesses.