Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isis K. Mullarky is active.

Publication


Featured researches published by Isis K. Mullarky.


Infection and Immunity | 2005

Cell-Mediated Protection against Pulmonary Yersinia pestis Infection

Michelle A. Parent; Kiera N. Berggren; Lawrence W. Kummer; Lindsey B. Wilhelm; Frank M. Szaba; Isis K. Mullarky; Stephen T. Smiley

ABSTRACT Pulmonary infection with the bacterium Yersinia pestis causes pneumonic plague, an often-fatal disease for which no vaccine is presently available. Antibody-mediated humoral immunity can protect mice against pulmonary Y. pestis infection, an experimental model of pneumonic plague. Little is known about the protective efficacy of cellular immunity. We investigated the cellular immune response to Y. pestis in B-cell-deficient μMT mice, which lack the capacity to generate antibody responses. To effectively prime pulmonary cellular immunity, we intranasally vaccinated μMT mice with live replicating Y. pestis. Vaccination dramatically increased survival of μMT mice challenged intranasally with a lethal Y. pestis dose and significantly reduced bacterial growth in pulmonary, splenic, and hepatic tissues. Vaccination also increased numbers of pulmonary T cells, and administration of T-cell-depleting monoclonal antibodies at the time of challenge abrogated vaccine-induced survival. Moreover, the transfer of Y. pestis-primed T cells to naive μMT mice protected against lethal intranasal challenge. These findings establish that vaccine-primed cellular immunity can protect against pulmonary Y. pestis infection and suggest that vaccines promoting both humoral and cellular immunity will most effectively combat pneumonic plague.


Infection and Immunity | 2006

Gamma Interferon, Tumor Necrosis Factor Alpha, and Nitric Oxide Synthase 2, Key Elements of Cellular Immunity, Perform Critical Protective Functions during Humoral Defense against Lethal Pulmonary Yersinia pestis Infection

Michelle A. Parent; Lindsey B. Wilhelm; Lawrence W. Kummer; Frank M. Szaba; Isis K. Mullarky; Stephen T. Smiley

ABSTRACT Pulmonary infection by Yersinia pestis causes pneumonic plague, a rapidly progressing and often fatal disease. To aid the development of safe and effective pneumonic plague vaccines, we are deciphering mechanisms used by the immune system to protect against lethal pulmonary Y. pestis infection. In murine pneumonic plague models, passive transfer of convalescent-phase sera confers protection, as does active vaccination with live Y. pestis. Here, we demonstrate that protection by either protocol relies upon both gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) cytokines classically associated with type 1 cellular immunity. In both protocols, abrogating IFN-γ or TNF-α activity significantly decreases survival and increases the bacterial burden in pulmonary, splenic, and hepatic tissues. Neutralization of either cytokine also counteracts challenge-induced, vaccination-dependent upregulation of nitric oxide synthase 2 (NOS2). Moreover, genetic depletion of NOS2 suppresses protection conferred by serotherapy. We conclude that IFN-γ, TNF-α, and NOS2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Y. pestis challenge. These observations strongly suggest that plague vaccines should strive to maximally prime both cellular and humoral immunity.


Biochemical Journal | 2006

Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells

Wendy Trigona; Isis K. Mullarky; Yu-Zhang Cao; Lorraine M. Sordillo

Certain selenoproteins such as GPX-1 (glutathione peroxidase-1) and TrxR1 (thioredoxin reductase-1) possess important antioxidant defence functions in vascular endothelial cells. Reduced selenoprotein activity during dietary selenium (Se) deficiency can result in a compensatory increase of other non-Se-dependent antioxidants, such as HO-1 (haem oxygenase-1) that may help to counteract the damaging effects of oxidant stress. However, the role of individual selenoproteins in regulating vascular-derived protective gene responses such as HO-1 is less understood. Using an oxidant stress model based on Se deficiency in BAECs (bovine aortic endothelial cells), we sought to determine whether TrxR1 activity may contribute to the differential regulation of HO-1 expression as a function of altered redox environment. Se-sufficient BAECs up-regulated HO-1 expression following stimulation with the pro-oxidant, 15-HPETE (15-hydroperoxyeicosatetraenoic acid), and levels of this antioxidant inversely correlated with EC apoptosis. While Se-deficient BAECs exhibited higher basal levels of HO-1, it was not up-regulated upon 15-HPETE treatment, which resulted in significantly higher levels of pro-apoptotic markers. Subsequent results showed that HO-1 induction depended on the activity of TrxR1, as proved with chemical inhibitor studies and direct inhibition with TrxR1 siRNA. Finally, restoring intracellular levels of the reduced substrate Trx (thioredoxin) in Sedeficient BAECs was sufficient to increase HO-1 activation following 15-HPETE stimulation. These data provide evidence for the involvement of the Trx/TrxR system, in the regulation of HO-1 expression in BAECs during pro-oxidant challenge.


Free Radical Biology and Medicine | 2001

Increased 15-HPETE production decreases prostacyclin synthase activity during oxidant stress in aortic endothelial cells

James Weaver; Jane F. Maddox; Yu-Zhang Cao; Isis K. Mullarky; L.M. Sordillo

Selenium (Se) is an integral component of glutathione peroxidase and is able to detoxify peroxides that can affect arachidonic acid (AA) metabolism, thereby influencing eicosanoid biosynthesis. This study investigated the effects of oxidant stress, a consequence of Se deficiency, on eicosanoid formation and important key enzyme expression in bovine aortic endothelial cells (BAEC). Bovine aortic endothelial cells cultured in Se-deficient media and stimulated with tumor necrosis factor alpha or H2O2 produced significantly less prostacyclin (PGI(2)) and more 15-hydroxyeicosatetraenoic acid, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), and thromboxane than Se-supplemented BAEC. Additionally, reverse transcription polymerase chain reaction and immunoblotting determined that the mRNA and protein levels of the eicosanoid forming enzymes cyclooxygenase-1 (COX1), cyclooxygenase-2 (COX2), and PGI synthase were not significantly changed. The addition of 15-HPETE to Se-supplemented BAEC inhibited the production of PGI(2) suggesting that the accumulation of lipid hydroperoxides during Se-deficiency may be the underlying factor in the altered eicosanoid production during Se deficiency. Furthermore, inhibition of COX and addition of PGH(2) to Se-deficient or Se-supplemented BAEC still resulted in lower PGI(2) formation by Se-deficient cells. Together, these results suggest that Se deficiency modifies eicosanoid production by affecting the activity of key enzymes, particularly PGI synthase, rather than their transcription or translation.


Theriogenology | 2009

Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos

A. Dhali; V.M. Anchamparuthy; S.P. Butler; R.E. Pearson; Isis K. Mullarky; Francis C. Gwazdauskas

The effect of modified droplet vitrification was assessed on cellular actin filament organization, apoptosis related gene expression and development competence in mouse embryos cultured in vitro. Mouse zygotes, 2-cell embryos and morulae were vitrified in ethylene glycol (VS-1) and ethylene glycol plus DMSO (VS-2) and thawed by directly placing the vitrified drop into 0.3M sucrose solution at 37 degrees C. High recovery (93-99%) of morphologically normal embryos was evident following vitrification and thawing. No detectable actin filament disruption was observed in the embryos at any development stage following vitrification and thawing and/or in vitro culture. The expression pattern of Bax, Bcl2 and p53 genes was altered (P<0.05) in vitrified zygotes and 2-cell embryos, but not in morulae. Although a large proportion of the vitrified zygotes (59.5+/-4.4% in VS-1 and 57.9+/-4.5% in VS-2; mean+/-S.E.M.) and 2-cell embryos (63.1+/-4.4% in VS-1 and 59.2+/-4.3% in VS-2) developed into blastocysts, development of control embryos (70.2+/-5.0% of zygotes and 75.5+/-4.4% of 2-cell embryos) into blastocysts was higher (P<0.05). In contrast, development of the control and vitrified morulae into blastocysts (more than 85%) was similar. We concluded that the modified droplet vitrification procedure supported better survival of morula stage compared to zygotes and 2-cell mouse embryos.


Infection and Immunity | 2005

Yersinia pestis V Protein Epitopes Recognized by CD4 T Cells

Michelle A. Parent; Kiera N. Berggren; Isis K. Mullarky; Frank M. Szaba; Lawrence W. Kummer; Jeffrey J. Adamovicz; Stephen T. Smiley

ABSTRACT Pneumonic plague, an often-fatal disease for which no vaccine is presently available, results from pulmonary infection by the bacterium Yersinia pestis. The Y. pestis V protein is a promising vaccine candidate, as V protein immunizations confer to mice significant protection against aerosolized Y. pestis. CD4 T cells play central roles during vaccine-primed immune responses, but their functional contributions to Y. pestis vaccines have yet to be evaluated and optimized. Toward that end, we report here the identification of three distinct epitopes within the Y. pestis V protein that activate CD4 T cells in C57BL/6 mice. To our knowledge, these are the first identified CD4 T-cell epitopes in any Y. pestis protein. The epitopes are restricted by the I-Ab class II major histocompatibility complex molecule and are fully conserved between Y. pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica. Immunizing mice with a V protein-containing vaccine or with short peptides containing the identified epitopes primes antigen-specific production of interleukin 2 and gamma interferon by CD4 T cells upon their restimulation in vitro. Consistent with prior studies documenting protective roles for CD4 T cells during Y. enterocolitica infection, vaccinating mice with a 16-amino-acid peptide encoding one of the epitopes suffices to protect against an otherwise lethal Y. enterocolitica challenge. The identification of these epitopes will permit quantitative assessments of V-specific CD4 T cells, thereby enabling researchers to evaluate and optimize the contribution of these cells to vaccine-primed protection against pneumonic plague.


Journal of Mammary Gland Biology and Neoplasia | 2011

Targeting mucosal immunity in the battle to develop a mastitis vaccine.

Mini Bharathan; Isis K. Mullarky

The mucosal immune system encounters antigens that enhance and suppress immune function, and serves as a selective barrier against invading pathogens. The mammary gland not only encounters antigens but also produces a nutrient evolved to protect and enhance mucosal development in the neonate. Efforts to manipulate antibody concentrations in milk to prevent mastitis, an infection of the mammary gland, have been hampered both by complexity and variation in target pathogens and limited knowledge of cellular immunity in the gland. Successful vaccination strategies must overcome the natural processes that regulate types and concentrations of milk antibodies for neonatal development, and enhance cellular immunity. Furthermore, the need to overcome dampening of immunity caused by non-pathogenic encounters to successfully prevent establishment of infection is an additional obstacle in vaccine development at mucosal sites. A significant mastitis pathogen, Staphylococcus aureus, not only resides as a normal flora on a multitude of species, but also causes clinical disease with limited treatment options. Using the bovine model of S. aureus mastitis, researchers can decipher the role of antigen selection and presentation by mammary dendritic cells, enhance development of central and effector memory function, and subsequently target specific memory cells to the mammary gland for successful vaccine development. This brief review provides an overview of adaptive immunity, previous vaccine efforts, current immunological findings relevant to enhancing immune memory, and research technologies that show promise in directing future vaccine efforts to enhance mammary gland immunity and prevent mastitis.


Infection and Immunity | 2006

Tumor Necrosis Factor Alpha and Gamma Interferon, but Not Hemorrhage or Pathogen Burden, Dictate Levels of Protective Fibrin Deposition during Infection

Isis K. Mullarky; Frank M. Szaba; Kiera N. Berggren; Lawrence W. Kummer; Lindsey B. Wilhelm; Michelle A. Parent; Lawrence L. Johnson; Stephen T. Smiley

ABSTRACT While coagulation often causes pathology during infectious disease, we recently demonstrated that fibrin, a product of the coagulation pathway, performs a critical protective function during acute toxoplasmosis (L. L. Johnson, K. N. Berggren, F. M. Szaba, W. Chen, and S. T. Smiley, J. Exp. Med. 197:801-806, 2003). Here, we investigate the mechanisms regulating the formation of this protective fibrin. Through comparisons of Toxoplasma-infected wild-type and cytokine-deficient mice we dissociate, for the first time, the relative fibrin-regulating capacities of pathogen products, host cytokines, and infection-stimulated hemorrhage. Remarkably, neither the pathogen burden nor hemorrhage is a primary regulator of fibrin levels. Rather, two type 1 cytokines exert dominant and counterregulatory roles: tumor necrosis factor alpha (TNF-α), acting via the type 1 TNF-α receptor, promotes fibrin deposition, while gamma interferon (IFN-γ), acting via STAT1 and IFN-γ receptors expressed on radioresistant cells, suppresses fibrin deposition. These findings have important clinical implications, as they establish that cytokines known to regulate pathological coagulation also dictate levels of protective fibrin deposition. We present a novel model depicting mechanisms by which the immune system can destroy infected tissue while independently restraining hemorrhage and promoting tissue repair through the deliberate deposition of protective fibrin.


Reproduction in Domestic Animals | 2011

Influence of Cysteine in Conjunction with Growth Factors on the Development of In Vitro‐Produced Bovine Embryos

Wm Lott; V.M. Anchamparuthy; Ml McGilliard; Isis K. Mullarky; Francis C. Gwazdauskas

Cysteine supplementation to in vitro maturation (IVM) media of bovine oocytes increases cellular glutathione production. Beneficial effects of growth factors for improving the rate of blastocyst development have been reported, but combined effects are unknown. This study was conducted to determine the additive effect of cysteine with epidermal growth factor (EGF) and/or insulin-like growth factor-I (IGF-I) on embryo development. Bovine oocytes from slaughterhouse ovaries were matured in TCM-199 (control), with or without the addition of 0.6 mm cysteine (C) at 0 or 12 h of maturation. After in vitro fertilization, embryos were allocated to culture treatments containing synthetic oviductal fluid medium. Culture treatments included fetal calf serum (FCS, 4%) alone; IGF-I (100 ng/ml); EGF (10 ng/ml); and IGF-I + EGF (100 + 10 ng/ml). Although rates for blastocysts development were not different among treatments, an increased proportion of embryos attaining morula formation was achieved when cysteine was added to the maturation media (12 h C IGF-I + EGF, 41.4%; 0 h C EGF, 40.0%) as compared to control (FCS: 34.6%). When cysteine treatments were combined, percent cleavage was greater for IGF-I + EGF (70.8%) compared to FCS (61.2%). The abundance of mRNA from the apoptotic genes, Bax and Bcl-2, and the oxidative stress genes, copper (Cu)-zinc (Zn) superoxide dismutase (SOD) and manganese (Mn) SOD in embryos was assessed. No treatment effect was observed on the expression of these genes. In conclusion, supplementation of cysteine during IVM of oocytes, in conjunction with growth factors could effectively be used as a replacement for FCS.


Comparative Immunology Microbiology and Infectious Diseases | 2012

Bovine mammary dendritic cells: a heterogeneous population, distinct from macrophages and similar in phenotype to afferent lymph veiled cells.

Nicolas G. Maxymiv; Mini Bharathan; Isis K. Mullarky

Dendritic cells (DC) are a heterogeneous population of professional antigen presenting cells and are potent stimulators of naïve T-cells. However, there is little previous research describing DC in bovine mammary tissue, primarily because of the difficulty distinguishing these cells from macrophages, which possess a similar phenotype. Using immunohistofluorescence and a combination of markers (MHC-II, CD205, CD11c), DC were localized in the bovine mammary gland and supramammary lymph node. In mammary tissue DC were found within the alveolar epithelium and within the intralobular connective tissue. In the lymph node DC were found on the periphery of B-cell areas, in the cortex, and among T-cells in the paracortex and medulla. DC in mammary parenchyma and supramammary lymph nodes were quantified and further characterized using flow cytometry. DC were CD11c(hi), CD14(lo) cells that expressed MHC-II and CD205. DC could be distinguished from macrophages based on their low CD14 expression. This research provides a better understanding of mammary gland immunology, while potentially aiding in the targeting of antigens to mucosal DC for vaccine development.

Collaboration


Dive into the Isis K. Mullarky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge