Ismael Aranda
Center for International Forestry Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ismael Aranda.
Tree Physiology | 2010
José Alberto Ramírez-Valiente; David Sánchez-Gómez; Ismael Aranda; Fernando Valladares
Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both years. Overall, the study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.
Tree Physiology | 2010
Jesús Rodríguez-Calcerrada; Owen K. Atkin; T. Matthew Robson; Joana Zaragoza-Castells; Luis Gil; Ismael Aranda
Little is known about how environmental factors shape the short- and long-term responses of leaf respiration to temperature under field conditions despite the importance of respiration for plant and stand carbon balances. Impacts of water availability and canopy cover on leaf dark respiration (R) and temperature sensitivity were assessed in beech (Fagus sylvatica L.) seedlings in a sub-Mediterranean population. We studied seedlings established within canopy gaps (39% global site factor; GSF) that were subject to either no watering (unwatered plants; UW) or regular watering (2-10% higher volumetric topsoil water content as summer progressed; W plants) and seedlings established beneath the adjacent understorey (12% GSF). Leaf R rose exponentially with diurnal increases in temperature; the same temperature sensitivity (Q(10): 2.2) was found for understorey and gap plants, irrespective of watering treatment. Respiration estimated at 25 degrees C (R(25)) was lower in the understorey than the gaps and was significantly lower in the unwatered than in the watered gap plants by the end of summer (0.65 versus 0.80 micromol m(-2) s(-1)). R(25) declined with increasing summer temperature in all plants; however, respiration estimated at the prevailing ambient temperature did not change through the summer. There were parallel declines in R(25) and concentrations of starch and soluble sugars with increasing summer temperature for gap plants. We conclude that seasonal shifts in temperature-response curves of beech leaf R occur in both low- and high-light environments; since leaf R decreased with increasing plant water deficit, such shifts are likely to be greater whenever plants experience summer drought compared to scenarios where plants experience high rainfall in summer.
Tree Genetics & Genomes | 2012
T. Matthew Robson; David Sánchez-Gómez; F. Javier Cano; Ismael Aranda
We assessed the response of 11-year-old saplings from six beech provenances growing in a common-garden trial at the southwestern range limit. Provenances from distinct climatic regions across the European beech distribution were selected. The local Spanish provenance appeared well suited to the site conditions, maintaining high rates of assimilation even in midsummer, but so did the provenance of southern continental origin, from Gotze-Delchev, Bulgaria. Those provenances from cooler sites in central Europe, a continental mountain climate in the Czech Republic and a continental range-edge site in eastern Poland, along with a German provenance of mild maritime origin, had good physiological functionality in early summer but reduced carbon assimilation (Aarea) and apparent soil–leaf hydraulic conductivity (KL) in midsummer. The northern maritime provenance from Sweden demonstrated severely-reduced photosynthetic capacity. These groupings of provenances according to their photosynthetic performance, stable carbon isotope composition (δ13C; a proxy for water-use efficiency) and leaf water potential under marginal conditions, during late summer in the trial, suggest that they have divergent strategies for water use. The research highlights large intraspecific differences among beech provenances of distinct origin and strategies which are expected to modify their response to drought, requiring future genetic studies to explicitly determine the basis of this ecophysiological differentiation.
Tree Genetics & Genomes | 2011
José Alberto Ramírez-Valiente; Fernando Valladares; Antonio Delgado Huertas; S. Granados; Ismael Aranda
Increased drought severity is expected in the Mediterranean Basin over the twenty-first century, but our understanding of the potential of most forest tree species to cope with it remains uncertain. In this study, (1) we examined the potential effects of long-term selection and the capacity to respond to future changes in selective pressures in three populations of cork oak (Quercus suber L.). For this purpose, we evaluated the response to dry conditions of 45 open-pollinated trees originating from populations in Morocco, Portugal, and Spain. Growth, leaf size, specific leaf area (SLA), carbon isotope discrimination (Δ13C), leaf nitrogen content (Nmass), and total chlorophyll content (Chlmass) were measured in 9-year-old plants. (2) We also investigated the relationships between functional traits and aboveground growth by regression models. Plants presenting larger and more sclerophyllous leaves (low SLA and high leaf thickness) exhibited higher growths, with results suggesting that these traits are subjected to divergent selection in this species. Heritability estimates were moderately high for Δ13C (0.43 ± 0.25–0.83 ± 0.31) and stem diameter (0.40 ± 0.15–0.71 ± 0.28) for the tree populations. For the rest of the traits (except for annual growth), heritability values varied among populations, particularly for height, leaf size, leaf thickness, and Nmass. Our results suggest that natural selection has led to local adaptations and has also affected the genetic variance intrapopulation in these cork oak populations, although studies with a higher number of populations should be carried out across different years. Additionally, the absence of significant genetic correlations and the fact that correlated traits did not undergo opposing selection provided little evidence for constraints on evolution caused by genetic correlations.
Plant Cell and Environment | 2013
F. Javier Cano; David Sánchez-Gómez; Jesús Rodríguez-Calcerrada; Charles R. Warren; Luis Gil; Ismael Aranda
In recent years, many studies have focused on the limiting role of mesophyll conductance (gm ) to photosynthesis (An ) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf-level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought-induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought-induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.
New Forests | 2010
Jesús Rodríguez-Calcerrada; Francisco Javier Cano; María Valbuena-Carabaña; Luis Gil; Ismael Aranda
The extent to which seedling recruitment is limited by summer drought in Mediterranean-type ecosystems depends on the light microsite, yet the relationship between light availability and water status, functional performance, and survival of seedlings in these systems is still unclear. Over a 3-year period, we studied the pattern of survival and functional performance of seedlings of Quercus petraea (Matt.) Liebl. and Quercus pyrenaica Willd. in a montane forest in central Spain, which is the southern edge of the natural range of Q. petraea. After a mast year of the two species, 72 plots were established in six microhabitats spanning a range of overstorey canopy closure: closed, partial and open canopies dominated by either Q. petraea or Q. pyrenaica adult trees. Seedlings of each species naturally emerged beneath the conspecific-dominated canopies. The second and third years of study were extremely dry. Three years after emergence, the greatest seedling survival occurred beneath the partial canopy of Q. pyrenaica trees (8%) and the lowest (0%) beneath the closed canopies of Q. pyrenaica and Q. petraea. Survival for Q. pyrenaica increased linearly with understorey light across the range of 10–35% Global Site Factor. Plant water deficit (estimated by leaf water potential) was high across microhabitats, and increased with light availability for Q. pyrenaica. Potential for photosynthesis (estimated by the electron transport rate of photosystem II) decreased with canopy closure; and potential for light harvesting (e.g. specific leaf area (SLA) and chlorophyll concentration) increased with closure. Extreme water deficit could be the main contributor to seedling death in the more open microhabitats, whereas light level was insufficient to maintain carbon balance under the water-stressful conditions existing beneath the closed tree canopies. Seedling establishment appears to be a limiting factor for the recruitment of both oaks within this forest in a wide range of microhabitats, especially for the more drought-sensitive Q. petraea. Moderate reductions of tree canopy cover can improve seedling establishment, but extreme summer droughts can prevent the success of any silvicultural practice made.
Tree Physiology | 2008
T. Matthew Robson; Jesús Rodríguez-Calcerrada; David Sánchez-Gómez; Ismael Aranda
Refugia of mixed beech forest persist in the central mountains of the Iberian Peninsula at the south-western limit of European beech (Fagus sylvatica L.) distribution. The lack of beech regeneration is a concern in this region that has experienced reduced rainfall and higher temperatures over the past 30 years. Beech is considered especially susceptible to climate change because of its conservative shade-tolerant growth strategy; hence seedling responses to drought stress in gaps and in the understory are of particular interest. During the summer of 2007, a watering treatment raised the soil water content by up to 5% in gap and understory plots of beech seedlings in a mixed beech forest. Root-collar diameter was increased by our watering treatment in understory seedlings. Neither drought-avoidance through stomatal closure nor physiological drought-tolerance mechanisms were able to mitigate the effects of water stress in the understory seedlings, whereas osmotic adjustment enhanced the ability of the gap seedlings to tolerate water stress. Overall, high photosynthetic rates in the gaps, despite the photoinhibitory effects of high radiation, allowed gap seedlings to survive and grow better than the understory seedlings irrespective of water availability. Our results indicate that further intensification of summer drought, predicted for the Iberian Peninsula, will hinder the establishment of a beech seedling bank in the understory because of the conflicting seedling trait responses to simultaneously withstand water stress and to tolerate shade.
Tree Physiology | 2015
Ismael Aranda; Francisco Javier Cano; Antonio Gascó; Hervé Cochard; Andrea Nardini; Jose Antonio Mancha; Rosana López; David Sánchez-Gómez
The aim of this study was to provide new insights into how intraspecific variability in the response of key functional traits to drought dictates the interplay between gas-exchange parameters and the hydraulic architecture of European beech (Fagus sylvatica L.). Considering the relationships between hydraulic and leaf functional traits, we tested whether local adaptation to water stress occurs in this species. To address these objectives, we conducted a glasshouse experiment in which 2-year-old saplings from six beech populations were subjected to different watering treatments. These populations encompassed central and marginal areas of the range, with variation in macro- and microclimatic water availability. The results highlight subtle but significant differences among populations in their functional response to drought. Interpopulation differences in hydraulic traits suggest that vulnerability to cavitation is higher in populations with higher sensitivity to drought. However, there was no clear relationship between variables related to hydraulic efficiency, such as xylem-specific hydraulic conductivity or stomatal conductance, and those that reflect resistance to xylem cavitation (i.e., Ψ(12), the water potential corresponding to a 12% loss of stem hydraulic conductivity). The results suggest that while a trade-off between photosynthetic capacity at the leaf level and hydraulic function of xylem could be established across populations, it functions independently of the compromise between safety and efficiency of the hydraulic system with regard to water use at the interpopulation level.
Tree Genetics & Genomes | 2012
Tania Velasco-Conde; Igor Yakovlev; Juan Majada; Ismael Aranda; Øystein Johnsen
Maritime pine (Pinus pinaster) is an important commercial species throughout its Atlantic distribution. With the anticipated increase in desiccation of its habitat as a result of climate change, the selection of genotypes with increased survival and growth capability under these conditions for breeding programs is of great interest for this species. We aimed to study the response to a realistic drought stress under controlled conditions, looked for a method to measure dehydration resistance, and analyzed dehydrin expression in drought-resistant and drought-sensitive clones from different ecotypes. We report here the sequence characteristics and the expression patterns of five dehydrins from P. pinaster, along with the physiological characterization of drought stress responses in different genotypes (clonally replicated plants), originating from a broad geographical distribution across France and Spain (provenances). In total, we distinguished five different dehydrin genes in silico, grouped into two types—K2 and SKn. Three of the dehydrin genes had several sequence variants, differing by multiple or single amino acid substitutions. Only two of the dehydrins (PpinDhn3 and PpinDhn4) showed an increase in transcription with increased drought stress which was dependent on provenance and genotype, suggesting their involvement in drought resistance. The other dehydrins showed decreased expression trends with increased severity of the drought stress. The lack of close association between the drought stress and expression patterns of these dehydrin genes suggest that they could have other functions and not be involved in drought resistance. Our results suggest large differences in function between different dehydrin genes.
Annals of Forest Science | 2010
David Sánchez-Gómez; Juan Majada; Ricardo Alía; Isabel Feito; Ismael Aranda
Abstract• Interpopulation variation in key functional traits of Pinus pinaster Ait. is well recognized. However, the relative importance of drought tolerance to explain this regional variation in the species remains elusive.• Here, we raise the question whether water availability constitutes a likely driver of regional variation in biomass allocation, growth and morphological traits of ten populations that cover the distribution range of P. pinaster. We carried out an experiment where seedlings of five families per population were submitted to two contrasting watering treatments.• The effects of water availability and population were significant for relative diameter and height growth rate, biomass allocation and number of lateral stems and dwarf shoots. Total dry mass significantly differed between watering treatments but it did not among populations. Populations could be clustered into four main groups. Root mass fraction explained most of the variation and significantly correlated to altitude but not to aridity.• The geographical pattern of genetic variation found in morphology and biomass allocation did not translate into population differences in drought tolerance or phenotypic plasticity to water availability, indicating that water availability is not a likely driver of the regional variation observed in the studied traits of P. pinaster at the seedling stage.Résumé• La variabilité de traits fonctionnels clés entre populations de Pinus pinaster Ait. est bien connue. Cependant, l’importance relative de la tolérance à la sécheresse pour expliquer cette variabilité régionale reste difficile à cerner.• Ici, nous testons l’hypothèse selon la quelle la disponibilité en eau constitue un moteur des variations régionales, de répartition de biomasse, de croissance et de traits morphologiques dans dix populations qui couvrent la zone de répartition de P. pinaster. Nous avons mené une expérience où les semis de cinq familles par population ont été soumis à deux régimes d’irrigation contrastés.• Les effets de la disponibilité en eau et de la population ont été importants sur le diamètre et le taux relatif de croissance en hauteur, la répartition de la biomasse et le nombre de tiges latérales et de pousses courtes. La masse sèche totale différait sensiblement entre les traitements d’arrosage, mais pas entre les populations. Les populations pourraient être regroupées en quatre groupes principaux. La fraction de masse racinaire expliquait la plupart des variations et est significativement corrélée à l’altitude mais pas à l’aridité.• La répartition géographique de la variation génétique de morphologie et de répartition de la biomasse, ne se traduit pas en différences de résistance à la sécheresse ou de plasticité phénotypique à la disponibilité en eau. Cela indique que la disponibilité en eau n’est pas un moteur des variations régionales observées dans les traits foinctionnels de P. pinaster au stade semis.