Ismael Falcon-Suarez
National Oceanography Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ismael Falcon-Suarez.
Geophysical Prospecting | 2016
Ismael Falcon-Suarez; Laurence North; Kelvin Amalokwu; Angus I. Best
Geological reservoirs can be structurally complex and can respond to CO2 injection both geochemically and geomechanically. Hence, predicting reservoir formation behaviour in response to CO2 injection and assessing the resulting hazards are important prerequisites for safe geological CO2 storage. This requires a detailed study of thermal-hydro-mechanical-chemical coupled phenomena that can be triggered in the reservoir formation, most readily achieved through laboratory simulations of CO2 injection into typical reservoir formations. Here, we present the first results from a new experimental apparatus of a steady-state drainage flooding test conducted through a synthetic sandstone sample, simulating real CO2 storage reservoir conditions in a shallow (?1 km), low permeability ?1mD, 26% porosity sandstone formation. The injected pore fluid comprised brine with CO2 saturation increasing in steps of 20% brine/CO2 partial flow rates up to 100% CO2 flow. At each pore fluid stage, an unload/loading cycle of effective pressure was imposed to study the response of the rock under different geomechanical scenarios. The monitoring included axial strains and relative permeability in a continuous mode (hydromechanical assessment), and related geophysical signatures (ultrasonic P-wave and S-wave velocities Vp and Vs, and attenuations Qp?1 and Qs?1, respectively, and electrical resistivity). On average, the results showed Vp and Vs dropped ?7% and ?4% respectively during the test, whereas Qp?1 increased ?55% and Qs?1 decreased by ?25%. From the electrical resistivity data, we estimated a maximum CO2 saturation of ?0.5, whereas relative permeability curves were adjusted for both fluids. Comparing the experimental results to theoretical predictions, we found that Gassmanns equations explain Vp at high and very low CO2 saturations, whereas bulk modulus yields results consistent with White and Dutta–Ode model predictions. This is interpreted as a heterogeneous distribution of the two pore fluid phases, corroborated by electrical resistivity tomography images. The integration of laboratory geophysical and hydromechanical observations on representative shallow low-permeable sandstone reservoir allowed us to distinguish between pure geomechanical responses and those associated with the pore fluid distribution. This is a key aspect in understanding CO2 injection effects in deep geological reservoirs associated with carbon capture and storage practices.
Geophysical Prospecting | 2017
Ismael Falcon-Suarez; Jacobo Canal-Vila; Jordi Delgado-Martin; Laurence North; Angus I. Best
ABSTRACT We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m−3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ∼10 and ∼18 MPa under unconfined conditions with associated Youngs modulus and Poissons ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ∼10 MPa and then stabilises at ∼1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s−1 and 1.5–2.4 km s−1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.
Journal of Geophysical Research | 2018
Sourav K. Sahoo; Héctor Marín-Moreno; Laurence North; Ismael Falcon-Suarez; B.N. Madhusudhan; Angus I. Best; Timothy A. Minshull
Methane hydrate saturation estimates from remote geophysical data and borehole logs are needed to assess the role of hydrates in climate change, continental slope stability, and energy resource potential. Here we present laboratory hydrate formation/dissociation experiments in which we determined the methane hydrate content independently from pore pressure and temperature and from electrical resistivity. Using these laboratory experiments, we demonstrate that hydrate formation does not take up all the methane gas or water even if the system is under two phase water-hydrate stability conditions and gas is well distributed in the sample. The experiment started with methane gas and water saturations of 16.5% and 83.5%, respectively; during the experiment, hydrate saturation proceeded up to 26% along with 12% gas and 62% water remaining in the system. The coexistence of hydrate and gas is one possible explanation for discrepancies between estimates of hydrate saturation from electrical and acoustic methods. We suggest that an important mechanism for this coexistence is the formation of a hydrate film enveloping methane gas bubbles, trapping the remaining gas inside.
Geophysical Prospecting | 2018
Ismael Falcon-Suarez; Kelvin Amalokwu; Jordi Delgado-Martin; Ben Callow; Katleen Robert; Laurence North; Sourav K. Sahoo; Angus I. Best
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi‐physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P‐ and S‐wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny‐shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies.
Environmental Science and Pollution Research | 2013
Jordi Delgado-Martin; Ricardo Juncosa-Rivera; Ismael Falcon-Suarez; Jacobo Canal-Vila
Energy Procedia | 2014
Ismael Falcon-Suarez; Laurence North; Angus I. Best
International Journal of Greenhouse Gas Control | 2017
Ismael Falcon-Suarez; Héctor Marín-Moreno; Fraser Browning; Anna Lichtschlag; Katleen Robert; Laurence North; Angus I. Best
Geophysical Journal International | 2017
Ismael Falcon-Suarez; G. Bayrakci; Timothy A. Minshull; Laurence North; Angus I. Best; Stéphane Rouméjon
ISRM Regional Symposium - EUROCK 2014 | 2014
Ismael Falcon-Suarez; L. North; Angus I. Best; J. Sothcott; J. Canal-Vila; Jordi Delgado-Martin
Engineering Geology | 2014
Ismael Falcon-Suarez; Dieter Rammlmair; Ricardo Juncosa-Rivera; Jordi Delgado-Martin