Ismail Albayrak
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ismail Albayrak.
Aquatic Sciences | 2014
Ismail Albayrak; Vladimir Nikora; Oliver Miler; Matthew O’Hare
Flow–plant interactions are experimentally investigated at leaf, stem, and shoot scales in an open-channel flume at a range of Reynolds numbers. The experiments included measurements of instantaneous drag forces acting on leaves, stems, and shoots of the common freshwater plant species Glyceria fluitans, complemented with velocity measurements, high-resolution video recordings, and biomechanical tests of leaf and stem properties. The analyses of bulk statistics, power spectral densities, transfer functions, and cross-correlations of measured velocities and drag forces revealed that flow characteristics, drag force, and plant biomechanical and morphological properties are strongly interconnected and scale-dependent. The plant element–flow interactions can be subdivided into two classes: (I) passive interactions when the drag variability is due to the time variability of the wetted and frontal areas and squared approach velocity (due to the large-scale turbulence); and (II) active interactions representing a range of element-specific instabilities that depend on the element flexural rigidity and morphology. Implications of experimental findings for plant biophysics and ecology are briefly discussed.
Aquatic Sciences | 2014
Oliver Miler; Ismail Albayrak; Vladimir Nikora; Matthew O’Hare
Biomechanical properties and morphological characteristics of stems of eight species of submerged aquatic plants were studied to analyse (1) differences between river and lake specimens, (2) seasonal differences between winter/spring and summer/autumn specimens, and (3) change of biomechanical properties and morphological characteristics along the stems. The data show that river macrophytes display not only characteristic biomechanical traits and morphological characteristics specific to their hydraulic habitats, but also distinctive temporal changes due to seasonally varying water temperature, flow velocity, and growth phase. Furthermore, the data reveal differences between lake and river specimens that could be explained by wind exposure of the lake sampling sites and the species-specific flow requirements of the river macrophytes. Biomechanical properties and morphological characteristics varied along the stem with larger cross-sections and a higher resistance against tension and bending forces at the bottom compared to the top parts, being similar for both lake and river specimens. The acquired and analysed stem biomechanical and morphological data contribute to the plant biomechanics database to underpin a wide range of studies in aquatic ecology, river and wetland management.
IOP Conference Series: Earth and Environmental Science | 2016
David Felix; Ismail Albayrak; A Abgottspon; Robert M. Boes
Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.
IOP Conference Series: Earth and Environmental Science | 2016
David Felix; Ismail Albayrak; A Abgottspon; Robert M. Boes
Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.
Earth Surface Processes and Landforms | 2017
Christian Auel; Ismail Albayrak; Tetsuya Sumi; Robert M. Boes
Abstract Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ˜ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrichs model. Copyright
Earth Surface Processes and Landforms | 2017
Christian Auel; Ismail Albayrak; Tetsuya Sumi; Robert M. Boes
Abstract Particle dynamics are investigated experimentally in supercritical high‐speed open channel flow over a fixed planar bed of low relative roughness height simulating flows in high‐gradient non‐alluvial mountain streams and hydraulic structures. Non‐dimensional equations were developed for transport mode, particle velocity, hop length and hop height accounting for a wide range of literature data encompassing sub‐ and supercritical flow conditions as well as planar and alluvial bed configurations. Particles were dominantly transported in saltation and particle trajectories on planar beds were rather flat and long compared with alluvial bed data due to (1) increased lift forces by spinning motion, (2) strongly downward directed secondary currents, and (3) a planar flume bed where variation in particle reflection and damping effects were minor. The analysis of particle saltation trajectories revealed that the rising and falling limbs were almost symmetrical contradicting alluvial bed data. Furthermore, no or negligible effect of particle size and shape on particle dynamics were found. Implications of experimental findings for mechanistic saltation‐abrasion models are briefly discussed. Copyright
IOP Conference Series: Earth and Environmental Science | 2016
David Felix; Ismail Albayrak; André Abgottspon; Robert M. Boes
In the scope of a research project on hydro-abrasive erosion of Pelton turbines, a field study was conducted at the high-head HPP Fieschertal in Valais, Switzerland. The suspended sediment mass concentration (SSC) and particle size distribution (PSD) in the penstock have been continuously measured since 2012 using a combination of six measuring techniques. The SSC was on average 0.52 g/l and rose to 50 g/l in a major flood event in July 2012. The median particle size d 50 was usually 15 pm, rising up to 100 μm when particles previously having settled in the headwater storage tunnel were re-suspended at low water levels. The annual suspended sediment loads (SSL) varied considerably depending on flood events. Moreover, so-called particle loads (PLs) according to the relevant guideline of the International Electrotechnical Commission (IEC 62364) were calculated using four relations between particle size and the relative abrasion potential. For the investigated HPP, the time series of the SSL and the PLs had generally similar shapes over the three years. The largest differences among the PLs were observed during re-suspension events when the particles were considerably coarser than usual. Further investigations on the effects of particle sizes on hydroabrasive erosion of splitters and cut-outs of coated Pelton turbines are recommended.
Journal of Hydraulic Research | 2018
Ismail Albayrak; Carl Robert Kriewitz; Willi H. Hager; Robert M. Boes
ABSTRACT Scale effects and hydraulic head losses are systematically investigated for fish guidance structures, i.e. louvres and angled bar racks. The experiments were conducted at 1:1 and 1:2 Froude-scaled models in a laboratory flume for a wide range of rack configurations under various hydraulic conditions. The study involves three main rack angles, three bar angles, and three bar openings as primary parameters characterizing the structure investigated, and two bar shapes, three bar depths and three relative rack submergences as secondary parameters. This study demonstrates that the above parameters are strongly interrelated with respect to the head loss, and the bar opening has a determinative effect on the flow–rack interactions. The analysis of functional relations among the parameters has led to a new head loss prediction formula. The implications of the findings for optimum engineering solutions in terms of head loss, fish guidance and project economy are also addressed.
IOP Conference Series: Earth and Environmental Science | 2016
David Felix; Ismail Albayrak; André Abgottspon; Robert M. Boes
At medium- and high-head hydropower plants (HPPs) on sediment-laden rivers, hydro-abrasive erosion in turbines is an important economic issue. In HPPs with headwater storage, reservoir sedimentation is another problem related to fine sediment. On the one hand, turbine erosion is mitigated by reducing the sediment load in power waterways. On the other hand, reservoir sedimentation may be mitigated by conveying more fine sediment through power waterways to downstream river reaches. To optimize the operation of HPP schemes on the long-term, it is recommended to find a balance between these options based on real-time data using available monitoring techniques. An operational measure to mitigate turbine erosion is to close intakes and switch-off turbines in periods of high suspended sediment concentration (SSC) and coarse particles, typically during floods. Prerequisites for such operation are (i) there is no obligation to generate electricity, (ii) real-time SSC measurements are available, and (iii) the value of the switch-off SSC is known. In a case study at the high-head HPP Fieschertal, a switch-off SSC of 10 g/l was estimated. The economic analysis showed that it would have been clearly profitable to practice such a switch-off during the major flood in 2012 which had an SSC peak of 50 g/l.
IOP Conference Series: Earth and Environmental Science | 2016
David Felix; A Abgottspon; Ismail Albayrak; Robert M. Boes
At medium- and high-head hydropower plants (HPPs) on sediment-laden rivers, hydro-abrasive erosion on hydraulic turbines is a major economic issue. For optimization of such HPPs, there is an interest in equations to predict erosion depths. Such a semi-empirical equation suitable for engineering practice is proposed in the relevant guideline of the International Electrotechnical Commission (IEC 62364). However, for Pelton turbines no numerical values of the models calibration parameters have been available yet. In the scope of a research project at the high-head HPP Fieschertal, Switzerland, the particle load and the erosion on the buckets of two hard-coated 32 MW-Pelton runners have been measured since 2012. Based on three years of field data, the numerical values of a group of calibration parameters of the IEC erosion model were determined for five application cases: (i) reduction of splitter height, (ii) increase of splitter width and (iii) increase of cut-out depth due to erosion of mainly base material, as well as erosion of coating on (iv) the splitter crests and (v) inside the buckets. Further laboratory and field investigations are recommended to quantify the effects of individual parameters as well as to improve, generalize and validate erosion models for uncoated and coated Pelton turbines.