Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ismail AlQerm is active.

Publication


Featured researches published by Ismail AlQerm.


international conference on computer communications and networks | 2013

CogWnet: A Resource Management Architecture for Cognitive Wireless Networks

Ismail AlQerm; Basem Shihada; Kang G. Shin

With the increasing adoption of wireless communication technologies, there is a need to improve management of existing radio resources. Cognitive radio is a promising technology to improve the utilization of wireless spectrum. Its operating principle is based on building an integrated hardware and software architecture that configures the radio to meet application requirements within the constraints of spectrum policy regulations. However, such an architecture must be able to cope with radio environment heterogeneity. In this paper, we propose a cognitive resource management architecture, called CogWnet, that allocates channels, re-configures radio transmission parameters to meet QoS requirements, ensures reliability, and mitigates interference. The architecture consists of three main layers: Communication Layer, which includes generic interfaces to facilitate the communication between the cognitive architecture and TCP/IP stack layers; Decision-Making Layer, which classifies the stack layers input parameters and runs decision-making optimization algorithms to output optimal transmission parameters; and Policy Layer to enforce policy regulations on the selected part of the spectrum. The efficiency of CogWnet is demonstrated through a testbed implementation and evaluation.


wireless and mobile computing, networking and communications | 2013

Enhanced cognitive Radio Resource Management for LTE systems

Ismail AlQerm; Basem Shihada; Kang G. Shin

The explosive growth in mobile Internet and related services has increased the need for more bandwidth in cellular networks. The Long-Term Evolution (LTE) technology is an attractive solution for operators and subscribers to meet such need since it provides high data rates and scalable bandwidth. Radio Resource Management (RRM) is essential for LTE to provide better communication quality and meet the application QoS requirements. Cognitive resource management is a promising solution for LTE RRM as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE network parameters to the environment conditions. The scheme optimizes resource blocks assignment, modulation selection and bandwidth selection to maximize throughput and minimize interference. The scheme uses constrained optimization for throughput maximization and interference control. It is also enhanced by learning mechanism to reduce the optimization complexity and improve the decision-making quality. Our evaluation results show that our scheme achieved significant improvements in throughput and LTE system capacity. Results also show the improvement in the user satisfaction over other techniques in LTE RRM.


international conference on communications | 2016

A cooperative online learning scheme for resource allocation in 5G systems

Ismail AlQerm; Basem Shihada

The demand on mobile Internet related services has increased the need for higher bandwidth in cellular networks. The 5G technology is envisioned as a solution to satisfy this demand as it provides high data rates and scalable bandwidth. The multi-tier heterogeneous structure of 5G with dense base station deployment, relays, and device-to-device (D2D) communications intends to serve users with different QoS requirements. However, the multi-tier structure causes severe interference among the multi-tier users which further complicates the resource allocation problem. In this paper, we propose a cooperative scheme to tackle the interference problem, including both cross-tier interference that affects macro users from other tiers and co-tier interference, which is among users belong to the same tier. The scheme employs an online learning algorithm for efficient spectrum allocation with power and modulation adaptation capability. Our evaluation results show that our online scheme outperforms others and achieves significant improvements in throughput, spectral efficiency, fairness, and outage ratio.


advanced information networking and applications | 2014

Adaptive Decision-Making Scheme for Cognitive Radio Networks

Ismail AlQerm; Basem Shihada

Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.


global communications conference | 2014

Adaptive multi-objective Optimization scheme for cognitive radio resource management

Ismail AlQerm; Basem Shihada

Cognitive Radio is an intelligent Software Defined Radio that is capable to alter its transmission parameters according to predefined objectives and wireless environment conditions. Cognitive engine is the actuator that performs radio parameters configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance. The optimization relies on adapting radio transmission parameters to environment conditions using constrained optimization modeling called fitness functions in an iterative manner. These functions include minimizing power consumption, Bit Error Rate, delay and interference. On the other hand, maximizing throughput and spectral efficiency. Cross-layer optimization is exploited to access environmental parameters from all TCP/IP stack layers. AMOS uses adaptive Genetic Algorithm in terms of its parameters and objective weights as the vehicle of optimization. The proposed scheme has demonstrated quick response and efficiency in three different scenarios compared to other schemes. In addition, it shows its capability to optimize the performance of TCP/IP layers as whole not only the physical layer.


IEEE Transactions on Vehicular Technology | 2017

Energy-Efficient Power Allocation in Multitier 5G Networks Using Enhanced Online Learning

Ismail AlQerm; Basem Shihada

The multitier heterogeneous structure of 5G with dense small cells deployment, relays, and device-to-device (D2D) communications operating in an underlay fashion is envisioned as a potential solution to satisfy the future demand for cellular services. However, efficient power allocation among dense secondary transmitters that maintains quality of service (QoS) for macro (primary) cell users and secondary cell users is a critical challenge for operating such radio. In this paper, we focus on the power allocation problem in the multitier 5G network structure using a noncooperative methodology with energy efficiency consideration. Therefore, we propose a distributive intuition-based online learning scheme for power allocation in the downlink of the 5G systems, where each transmitter surmises other transmitters power allocation strategies without information exchange. The proposed learning model exploits a brief state representation to account for the problem of dimensionality in online learning and expedite the convergence. The convergence of the proposed scheme is proved and numerical results demonstrate its capability to achieve fast convergence with QoS guarantee and significant improvement in system energy efficiency.


International Conference on Cognitive Radio Oriented Wireless Networks | 2015

Cognitive Aware Interference Mitigation Scheme for LTE Femtocells

Ismail AlQerm; Basem Shihada

Femto-cells deployment in today’s cellular networks came into practice to fulfill the increasing demand for data services. However, interference to other femto and macro-cells users remains an unresolved challenge. In this paper, we propose an interference mitigation scheme to control the cross-tier interference caused by femto-cells to the macro users and the co-tier interference among femtocells. Cognitive radio spectrum sensing capability is utilized to determine the non-occupied channels or the ones that cause minimal interference to the macro users. An awareness based channel allocation scheme is developed with the assistance of the graph-coloring algorithm to assign channels to the femto-cells base stations with power optimization, minimal interference, maximum throughput, and maximum spectrum efficiency. In addition, the scheme exploits negotiation capability to match traffic load and QoS with the channel capacity, and to maintain efficient utilization of the available channels.


consumer communications and networking conference | 2017

Hybrid cognitive engine for radio systems adaptation

Ismail AlQerm; Basem Shihada

Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.


IEEE Transactions on Mobile Computing | 2018

Sophisticated Online Learning Scheme for Green Resource Allocation in 5G Heterogeneous Cloud Radio Access Networks

Ismail AlQerm; Basem Shihada


consumer communications and networking conference | 2018

Supervised cognitive system: A new vision for cognitive engine design in wireless networks

Ismail AlQerm; Basem Shihada

Collaboration


Dive into the Ismail AlQerm's collaboration.

Top Co-Authors

Avatar

Basem Shihada

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge