Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isobella Honeyborne is active.

Publication


Featured researches published by Isobella Honeyborne.


Nature Medicine | 2007

CD8+ T-cell responses to different HIV proteins have discordant associations with viral load

Photini Kiepiela; Kholiswa Ngumbela; Christina Thobakgale; Dhanwanthie Ramduth; Isobella Honeyborne; Eshia Moodley; Shabashini Reddy; Chantal de Pierres; Zenele Mncube; Nompumelelo Mkhwanazi; Karen Bishop; Mary van der Stok; Kriebashnie Nair; Nasreen Khan; Hayley Crawford; Rebecca Payne; Alasdair Leslie; Julia G. Prado; Andrew J. Prendergast; John Frater; Noel D. McCarthy; Christian Brander; Gerald H. Learn; David C. Nickle; Christine Rousseau; Hoosen Coovadia; James I. Mullins; David Heckerman; Bruce D. Walker; Philip J. R. Goulder

Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8+ T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein–specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8+ T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.


Nature | 2004

Dominant influence of HLA-B in mediating the potential co-evolution of HIV and hla

Photini Kiepiela; Alasdair Leslie; Isobella Honeyborne; Danni Ramduth; Christina Thobakgale; Senica Chetty; Prinisha Rathnavalu; C. Moore; K. Pfafferott; Louise Hilton; Peter Zimbwa; Sarah Moore; Todd M. Allen; Christian Brander; Marylyn M. Addo; Marcus Altfeld; I. James; S. Mallal; Michael Bunce; Linda Barber; James Szinger; Cheryl L. Day; Paul Klenerman; James I. Mullins; Bette Korber; Hoosen Mohamed Coovadia; Bruce D. Walker; Philip J. R. Goulder

The extreme polymorphism in the human leukocyte antigen (HLA) class I region of the human genome is suggested to provide an advantage in pathogen defence mediated by CD8+ T cells. HLA class I molecules present pathogen-derived peptides on the surface of infected cells for recognition by CD8+ T cells. However, the relative contributions of HLA-A and -B alleles have not been evaluated. We performed a comprehensive analysis of the class I restricted CD8+ T-cell responses against human immunodeficiency virus (HIV-1), immune control of which is dependent upon virus-specific CD8+ T-cell activity. In 375 HIV-1-infected study subjects from southern Africa, a significantly greater number of CD8+ T-cell responses are HLA-B-restricted, compared to HLA-A (2.5-fold; P = 0.0033). Here we show that variation in viral set-point, in absolute CD4 count and, by inference, in rate of disease progression in the cohort, is strongly associated with particular HLA-B but not HLA-A allele expression (P < 0.0001 and P = 0.91, respectively). Moreover, substantially greater selection pressure is imposed on HIV-1 by HLA-B alleles than by HLA-A (4.4-fold, P = 0.0003). These data indicate that the principal focus of HIV-specific activity is at the HLA-B locus. Furthermore, HLA-B gene frequencies in the population are those likely to be most influenced by HIV disease, consistent with the observation that B alleles evolve more rapidly than A alleles. The dominant involvement of HLA-B in influencing HIV disease outcome is of specific relevance to the direction of HIV research and to vaccine design.


Journal of Experimental Medicine | 2005

Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA

Alasdair Leslie; Daniel G. Kavanagh; Isobella Honeyborne; K. Pfafferott; Charles Edwards; Tilly Pillay; Louise Hilton; Christina Thobakgale; Danni Ramduth; Rika Draenert; Sylvie Le Gall; Graz Luzzi; Anne Edwards; Christian Brander; Andrew K. Sewell; Sarah Moore; James I. Mullins; C. Moore; S. Mallal; Nina Bhardwaj; Karina Yusim; Rodney E. Phillips; Paul Klenerman; Bette T. Korber; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of “negatively associated” or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development.


Journal of Virology | 2007

Compensatory Mutation Partially Restores Fitness and Delays Reversion of Escape Mutation within the Immunodominant HLA-B*5703-Restricted Gag Epitope in Chronic Human Immunodeficiency Virus Type 1 Infection

Hayley Crawford; Julia G. Prado; Alasdair Leslie; Stéphane Hué; Isobella Honeyborne; Sharon Reddy; Mary van der Stok; Zenele Mncube; Christian Brander; Christine Rousseau; James I. Mullins; Richard A. Kaslow; Paul A. Goepfert; Susan Allen; Eric Hunter; Joseph Mulenga; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

ABSTRACT HLA-B*5703 is associated with effective immune control in human immunodeficiency virus type 1 (HIV-1) infection. Here we describe an escape mutation within the immunodominant HLA-B*5703-restricted epitope in chronic HIV-1 infection, KAFSPEVIPMF (Gag 162-172), and demonstrate that this mutation reduces viral replicative capacity. Reversion of this mutation following transmission to HLA-B*5703-negative recipients was delayed by the compensatory mutation S165N within the same epitope. These data may help explain the observed association between HLA-B*5703 and long-term control of viremia.


Journal of Virology | 2008

Central Role of Reverting Mutations in HLA Associations with Human Immunodeficiency Virus Set Point

Philippa C. Matthews; Andrew J. Prendergast; Alasdair Leslie; Hayley Crawford; Rebecca Payne; Christine Rousseau; Morgane Rolland; Isobella Honeyborne; Jonathan M. Carlson; Carl M. Kadie; Christian Brander; Karen Bishop; Nonkululeko Mlotshwa; James I. Mullins; Hoosen Coovadia; Thumbi Ndung'u; Bruce D. Walker; David Heckerman; Philip J. R. Goulder

ABSTRACT Much uncertainty still exists over what T-cell responses need to be induced by an effective human immunodeficiency virus (HIV) vaccine. Previous studies have hypothesized that the effective CD8+ T-cell responses are those driving the selection of escape mutations that reduce viral fitness and therefore revert posttransmission. In this study, we adopted a novel approach to define better the role of reverting escape mutations in immune control of HIV infection. This analysis of sequences from 710 study subjects with chronic C-clade HIV type 1 infection demonstrates the importance of mutations that impose a fitness cost in the control of viremia. Consistent with previous studies, the viral set points associated with each HLA-B allele are strongly correlated with the number of Gag-specific polymorphisms associated with the relevant HLA-B allele (r = −0.56, P = 0.0034). The viral set points associated with each HLA-C allele were also strongly correlated with the number of Pol-specific polymorphisms associated with the relevant HLA-C allele (r = −0.67, P = 0.0047). However, critically, both these correlations were dependent solely on the polymorphisms identified as reverting. Therefore, despite the inevitable evolution of viral escape, viremia can be controlled through the selection of mutations that are detrimental to viral fitness. The significance of these results is in highlighting the rationale for an HIV vaccine that can induce these broad responses.


Journal of Virology | 2007

Control of Human Immunodeficiency Virus Type 1 Is Associated with HLA-B*13 and Targeting of Multiple Gag-Specific CD8+ T-Cell Epitopes

Isobella Honeyborne; Andrew J. Prendergast; Florencia Pereyra; Alasdair Leslie; Hayley Crawford; Rebecca Payne; Shabashini Reddy; Karen Bishop; Eshia Moodley; Kriebashnie Nair; Mary van der Stok; Noel D. McCarthy; Christine Rousseau; Marylyn M. Addo; James I. Mullins; Christian Brander; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

ABSTRACT To better understand relationships between CD8+ T-cell specificity and the immune control of human immunodeficiency virus type 1 (HIV-1), we analyzed the role of HLA-B*13, an allele associated with low viremia, in a cohort of 578 C clade-infected individuals in Durban, South Africa. Six novel B*13-restricted cytotoxic T lymphocyte epitopes were defined from analyses of 37 B*13-positive subjects, including three Gag epitopes. These B*13-restricted epitopes contribute to a broad Gag-specific CD8+ response that is associated with the control of viremia. These data are consistent with data from studies of other HLA-class I alleles associated with HIV control that have shown that the targeting of multiple Gag epitopes is associated with relative suppression of viremia.


Journal of Immunology | 2006

Differential selection pressure exerted on HIV by CTL targeting identical epitopes but restricted by distinct HLA alleles from the same HLA supertype

Alasdair Leslie; David A. Price; Pamela Mkhize; Karen Bishop; Almas Rathod; Cheryl L. Day; Hayley Crawford; Isobella Honeyborne; Tedi E. Asher; Graz Luzzi; Anne Edwards; Christine M. Rosseau; James I. Mullins; Gareth Tudor-Williams; Vas Novelli; Christian Brander; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder

HLA diversity is seen as a major challenge to CTL vaccines against HIV. One current approach focuses on “promiscuous” epitopes, presented by multiple HLA alleles from within the same HLA supertype. However, the effectiveness of such supertype vaccines depends upon the functional equivalence of CTL targeting a particular epitope, irrespective of the restricting HLA. In this study, we describe the promiscuous HIV-specific CTL epitopes presented by alleles within the B7 supertype. Substantial differences were observed in the ability of CTL to select for escape mutation when targeting the same epitope but restricted by different HLA. This observation was common to all six promiscuous B7 epitopes identified. Moreover, with one exception, there were no significant differences in the frequency, magnitude, or immunodominance of the CTL responses restricted by different HLA alleles to explain these discrepancies. This suggests that the unique peptide/MHC complexes generated by even closely related HLA induce CTL responses that are qualitatively different. This hypothesis is supported by additional differences observed between CTL targeting identical epitopes but restricted by different HLA: first, the occurrence of distinct, HLA-specific escape mutation; second, the recruitment of distinct TCR repertoires by particular peptide/MHC complexes; and, third, significant differences in the functional avidity of CTL. Taken together, these data indicate that significant functional differences exist between CTL targeting identical epitopes but restricted by different, albeit closely related HLA. These findings are of relevance to vaccine approaches that seek to exploit HLA supertypes to overcome the problem of HLA diversity.


Journal of Virology | 2007

Proliferative capacity of epitope-specific CD8 T-cell responses is inversely related to viral load in chronic human immunodeficiency virus type 1 infection

Cheryl L. Day; Photini Kiepiela; Alasdair Leslie; Mary van der Stok; Kriebashne Nair; Nasreen Ismail; Isobella Honeyborne; Hayley Crawford; Hoosen M. Coovadia; Philip J. R. Goulder; Bruce D. Walker; Paul Klenerman

ABSTRACT The relationship between the function of human immunodeficiency virus (HIV)-specific CD8 T-cell responses and viral load has not been defined. In this study, we used a panel of major histocompatibility complex class I tetramers to examine responses to frequently targeted CD8 T-cell epitopes in a large cohort of antiretroviral-therapy-naïve HIV type 1 clade C virus-infected persons in KwaZulu Natal, South Africa. In terms of effector functions of proliferation, cytokine production, and degranulation, only proliferation showed a significant correlation with viral load. This robust inverse relationship provides an important functional correlate of viral control relevant to both vaccine design and evaluation.


The Journal of Infectious Diseases | 2005

Differential Immunogenicity of HIV‐1 Clade C Proteins in Eliciting CD8+ and CD4+ Cell Responses

Danni Ramduth; Polan Chetty; Nolwandle Cyloria Mngquandaniso; Nonhlanhla Nene; Jason Harlow; Isobella Honeyborne; Nelisiwe Ntumba; Sharika Gappoo; Chiara Henry; Prakash Jeena; Marylyn M. Addo; Marcus Altfeld; Christian Brander; Cheryl L. Day; Hoosen Coovadia; Photini Kiepiela; Philip J. R. Goulder; Bruce D. Walker

BACKGROUND The relative immunogenicity of human immunodeficiency virus type 1 (HIV-1) proteins for CD8+ and CD4+ cell responses has not been defined. METHODS HIV-1-specific T cell responses were evaluated in 65 chronically HIV-1-infected untreated subjects by interferon- gamma flow cytometry with peptides spanning the clade C consensus sequence. RESULTS The magnitude of HIV-1-specific CD8+ T cell responses correlated significantly with CD4+ cell responses, but the percentage of CD8+ T cells directed against HIV-1 (median, 2.76%) was always greater than that of CD4+ cells (median, 0.24%). Although CD8+ T cell responses were equally distributed among Gag, Pol, and the regulatory and accessory proteins, Gag was the dominant target for CD4+ cell responses. There was no consistent relationship between virus-specific CD8+ or CD4+ cell response and viral load. However, the median viral load in subjects in whom Gag was the dominant CD8+ T cell target was significantly lower than that in subjects in whom non-Gag proteins were the main target (P=.007). CONCLUSIONS Gag-specific responses dominate the CD4+ T cell response to HIV, whereas CD8+ T cell responses are broadly distributed, which indicates differential immunogenicity of these cells against HIV-1. The preferential targeting of Gag by CD8+ T cells is associated with enhanced control of viral load.


AIDS Research and Human Retroviruses | 2008

Targeting of a CD8 T cell env epitope presented by HLA-B*5802 is associated with markers of HIV disease progression and lack of selection pressure

Kholiswa Ngumbela; Cheryl L. Day; Zenele Mncube; Kriebashnie Nair; Dhanwanthie Ramduth; Christina Thobakgale; Eshia Moodley; Sharon Reddy; C de Pierres; Nompumelelo Mkhwanazi; Karen Bishop; M. van der Stok; Nasreen Ismail; Isobella Honeyborne; Hayley Crawford; Daniel G. Kavanagh; Christine Rousseau; David C. Nickle; James I. Mullins; David Heckerman; Bette Korber; Hoosen M. Coovadia; Photini Kiepiela; Philip J. R. Goulder; Bruce D. Walker

In HIV-infected persons, certain HLA class I alleles are associated with effective control of viremia, while others are associated with rapid disease progression. Among the most divergent clinical outcomes are the relatively good prognosis in HLA-B*5801 expressing persons and poor prognosis with HLA-B*5802. These two alleles differ by only three amino acids in regions involved in HLA-peptide recognition. This study evaluated a cohort of over 1000 persons with chronic HIV clade C virus infection to determine whether clinical outcome differences associated with B*5801 (n = 93) and B*5802 ( n = 259) expression are associated with differences in HIV-1-specific CD8 (+) T cell responses. The overall breadth and magnitude of HIV-1-specific CD8(+) T cell responses were lower in persons expressing B*5802, and epitope presentation by B*5802 contributed significantly less to the overall response as compared to B*5801-restricted CD8 (+) T cells. Moreover, viral load in B*5802-positive persons was higher and CD4 cell counts lower when this allele contributed to the overall CD8 (+) T cell response, which was detected exclusively through a single epitope in Env. In addition, persons heterozygous for B*5802 compared to persons homozygous for other HLA-B alleles had significantly higher viral loads. Viral sequencing revealed strong selection pressure mediated through B*5801-restricted responses but not through B*5802. These data indicate that minor differences in HLA sequence can have a major impact on epitope recognition, and that selective targeting of Env through HLA-B*5802 is at least ineffectual if not actively adverse in the containment of viremia. These results provide experimental evidence that not all epitope-specific responses contribute to immune containment, a better understanding of which is essential to shed light on mechanisms involved in HIV disease progression.

Collaboration


Dive into the Isobella Honeyborne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alasdair Leslie

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar

Photini Kiepiela

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia G. Prado

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Karen Bishop

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge