Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Israel Del Toro is active.

Publication


Featured researches published by Israel Del Toro.


Biological Reviews | 2013

Invertebrates, ecosystem services and climate change

Chelse M. Prather; Shannon L. Pelini; Angela N. Laws; Emily B. Rivest; Megan Woltz; Christopher P. Bloch; Israel Del Toro; Chuan-Kai Ho; John S. Kominoski; T. A. Scott Newbold; Sheena Parsons; Anthony Joern

The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate‐mediated services under a changing climate.


Proceedings of the Royal Society B: Biological Sciences | 2015

Climate mediates the effects of disturbance on ant assemblage structure

Heloise Gibb; Nathan J. Sanders; Robert R. Dunn; Simon J. Watson; Manoli Photakis; Sílvia Abril; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Cristina Castracani; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Matthew C. Fitzpatrick; Crisanto Gómez; Donato A. Grasso; Sarah Groc; Brain Heterick; Benjamin D. Hoffmann; Lori Lach; John E. Lattke; Maurice Leponce

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Ecology | 2014

Insect mutualisms buffer warming effects on multiple trophic levels.

Michael Marquis; Israel Del Toro; Shannon L. Pelini

Insect mutualisms can have disproportionately large impacts on local arthropod and plant communities and their responses to climatic change. The objective of this study was to determine if the presence of insect mutualisms affects host plant and herbivore responses to warming. Using open-top warming chambers at Harvard Forest, Massachusetts, USA, we manipulated temperature and presence of ants and Chaitophorus populicola aphids on Populus tremuloides host plants and monitored ant attendance and persistence of C. populicola, predator abundance, plant stress, and abundance of Myzus persicae, a pest aphid that colonized plants during the experiment. We found that, regardless of warming, C. populicola persistence was higher when tended by ants, and some ant species increased aphid persistence more than others. Warming had negligible direct but strong indirect effects on plant stress. Plant stress decreased with warming only when both ants and C. populicola aphids were present and engaged in mutualism. Plant stress was increased by warming-induced reductions in predator abundance and increases in M. persicae aphid abundance. Altogether, these findings suggest that insect mutualisms could buffer the effects of warming on specialist herbivores and plants, but when mutualisms are not intact, the direct effects of warming on predators and generalist herbivores yield strong indirect effects of warming on plants.


Journal of Animal Ecology | 2015

Ant‐mediated ecosystem functions on a warmer planet: effects on soil movement, decomposition and nutrient cycling

Israel Del Toro; Relena R. Ribbons; Aaron M. Ellison

1. Direct and indirect consequences of global warming on ecosystem functions and processes mediated by invertebrates remain understudied but are likely to have major impacts on ecosystems in the future. Among animals, invertebrates are taxonomically diverse, responsive to temperature changes, and play major ecological roles which also respond to temperature changes. 2. We used a mesocosm experiment to evaluate impacts of two warming treatments (+3·5 and +5 °C, set-points) and the presence and absence of the ant Formica subsericea (a major mediator of processes in north temperate ecosystems) on decomposition rate, soil movement, soil respiration and nitrogen availability. 3, Replicate 19-L mesocosms were placed outdoors in lathe houses and continuously warmed for 30 days in 2011 and 85 days in 2012. Warming treatments mimicked expected temperature increases for future climates in eastern North America. 4. In both years, the amount of soil displaced and soil respiration increased in the warming and ant presence treatments (soil movement: 73-119%; soil respiration: 37-48% relative to the control treatments without ants). 5. Decomposition rate and nitrogen availability tended to decrease in the warmest treatments (decomposition rate: -26 to -30%; nitrate availability: -11 to -42%). 6. Path analyses indicated that ants had significant short-term direct and indirect effects on the studied ecosystem processes. These results suggest that ants may be moving more soil and building deeper nests to escape increasing temperatures, but warming may also influence their direct and indirect effects on soil ecosystem processes.


Ecology | 2017

A global database of ant species abundances

Heloise Gibb; Rob Dunn; Nathan J. Sanders; Blair F. Grossman; Manoli Photakis; Sílvia Abril; Donat Agosti; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Carsten A. Brühl; Cristina Castracani; Xim Cerdá; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Aaron M. Ellison; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Brian L. Fisher; Robert N. Fisher; Matthew C. Fitzpatrick; Crisanto Gómez; Nicholas J. Gotelli

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Northeastern Naturalist | 2013

Community Structure and Ecological and Behavioral Traits of Ants (Hymenoptera: Formicidae) in Massachusetts Open and Forested Habitats

Israel Del Toro; Kevin Towle; Drew N. Morrison; Shannon L. Pelini

Abstract - We investigated ant species richness, interspecific behavioral interactions, and community composition in adjacent forested and open habitat plots in two forest types of the northeastern United States: 1) the more common hemlock-White Pine forest studied at Harvard Forest Long Term Ecological Research Station in central Massachusetts, and T) the rare Pitch Pine barrens of Myles Standish State Forest in southeastern Massachusetts, which also provide habitat for multiple rare and endangered species. Overall, we found that species richness, behavioral interactions, and ecological traits vary between forested and adjacent open habitat plots. The number of species is five times higher per plot in the hemlock-White Pine open habitat (compared to forest habitat), but this pattern (i.e., higher species richness in open vs. forested plots) is not observed in the Pitch Pine barren site. Non-metric multidimensional scaling analyses suggest that community composition is significantly different between forest and open plots at both sites. However, community composition in open plots at both sites did not significantly differ from each other. We show that behaviorally dominant and submissive species mostly occur in open plots while neutrally interacting species are more restricted to forested plots, suggesting that interspecific competitive dynamics may be contributing to the community assembly patterns observed in open habitats. Our findings suggest that conservation and management for both open and forested habitat at either site is extremely important when attempting to maintain optimal ant biodiversity because each habitat type provides suitable conditions for different suites of ant communities.


PLOS ONE | 2013

Diversity of Eastern North American Ant Communities along Environmental Gradients

Israel Del Toro

Studies of species diversity patterns across regional environmental gradients seldom consider the impact of habitat type on within-site (alpha) and between-site (beta) diversity. This study is designed to identify the influence of habitat type across geographic and environmental space, on local patterns of species richness and regional turnover patterns of ant diversity in the northeastern United States. Specifically, I aim to 1) compare local species richness in paired open and forested transects and identify the environmental variables that best correlate with richness; and 2) document patterns of beta diversity throughout the region in both open and forested habitat. I systematically sampled ants at 67 sites from May to August 2010, spanning 10 degrees of latitude, and 1000 meters of elevation. Patterns of alpha and beta diversity across the region and along environmental gradients differed between forested and open habitats. Local species richness was higher in the low elevation and warmest sites and was always higher in open habitat than in forest habitat transects. Richness decreased as temperature decreased or elevation increased. Forested transects show strong patterns of decreasing dissimilarity in species composition between sites along the temperature gradient but open habitat transects did not. Maximum temperature of the warmest month better predicted species richness than either latitude or elevation. I find that using environmental variables as key predictors of richness yields more biologically relevant results, and produces simpler macroecological models than commonly used models which use only latitude and elevation as predictors of richness and diversity patterns. This study contributes to the understanding of mechanisms that structure the communities of important terrestrial arthropods which are likely to be influenced by climatic change.


Global Change Biology | 2018

Dominance-diversity relationships in ant communities differ with invasion

Xavier Arnan; Alan N. Andersen; Heloise Gibb; Catherine L. Parr; Nathan J. Sanders; Robert R. Dunn; Elena Angulo; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Cristina Castracani; Xim Cerdá; Israel Del Toro; Thibaut Delsinne; David A. Donoso; Emilie K. Elten; Tom M. Fayle; Matthew C. Fitzpatrick; Crisanto Gómez; Donato A. Grasso; Blair F. Grossman; Benoit Guénard; Nihara Gunawardene; Brian Heterick; Benjamin D. Hoffmann; Milan Janda; Clinton N. Jenkins; Petr Klimes; Lori Lach; Thomas Laeger

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


PeerJ | 2017

Nests of red wood ants (Formica rufa-group) are positively associated with tectonic faults: a double-blind test

Israel Del Toro; Gabriele M. Berberich; Relena R. Ribbons; Martin B. Berberich; Nathan J. Sanders; Aaron M. Ellison

Ecological studies often are subjected to unintentional biases, suggesting that improved research designs for hypothesis testing should be used. Double-blind ecological studies are rare but necessary to minimize sampling biases and omission errors, and improve the reliability of research. We used a double-blind design to evaluate associations between nests of red wood ants (Formica rufa, RWA) and the distribution of tectonic faults. We randomly sampled two regions in western Denmark to map the spatial distribution of RWA nests. We then calculated nest proximity to the nearest active tectonic faults. Red wood ant nests were eight times more likely to be found within 60 m of known tectonic faults than were random points in the same region but without nests. This pattern paralleled the directionality of the fault system, with NNE–SSW faults having the strongest associations with RWA nests. The nest locations were collected without knowledge of the spatial distribution of active faults thus we are confident that the results are neither biased nor artefactual. This example highlights the benefits of double-blind designs in reducing sampling biases, testing controversial hypotheses, and increasing the reliability of the conclusions of research.


bioRxiv | 2016

Morphological structure of ant assemblages in tropical and temperate forests

Rogério R. Silva; Israel Del Toro; Carlos Rodrigues Brandão; Aaron M. Ellison

Morphological variation in co-occurring species often is used to infer species assembly rules and other processes structuring ecological assemblages. We compared the morphological structure of ant assemblages in two biogeographic regions along two extensive latitudinal gradients to examine common patterns and unique characteristics of trait distribution. We sampled ant assemblages along extensive latitudinal gradients in Tropical Atlantic Forest in eastern Brazil and temperate forests in the eastern United States. We quantified 14 morphological traits related to the ecology and life history of each of 599 ant species and defined the morphological space occupied by different ant assemblages. Null models were used to test whether tropical and temperate ant assemblages differed from random expectation in morphological structure. Correlations between traits and climate were used to infer associations between habitat characteristics and morphological space occupied by ant assemblages. Tropical ant assemblages had higher morphological diversity and variation in the space of occupied morphospace, whereas temperate assemblages had higher variance in size. Although tropical ant assemblages had smaller morphological distances among species, species packing (i.e., mean nearest-neighbor distance) did not differ between regions. Null model analysis revealed scant evidence of habitat filtering or niche differentiation within assemblages. Different traits had different means, variances, skewness, and kurtosis values along each environmental gradient. Mean trait values within assemblages were associated mainly with region and correlated with temperature but trait variances had more complex responses to climate, including interactions between temperature and precipitation in the models. The higher functional diversity in tropical ant assemblages occurs by expansion of the morphospace rather than through an increase in species packing. Different traits vary independently along environmental gradients. Analysis of individual traits together with categorization of the moments of trait distributions (statistical central tendencies) provide new directions for quantifying morphological diversity in ant assemblages.

Collaboration


Dive into the Israel Del Toro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon L. Pelini

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Arnan

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew C. Fitzpatrick

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar

Robert R. Dunn

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge