Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Israr Ahmad is active.

Publication


Featured researches published by Israr Ahmad.


Toxicology and Applied Pharmacology | 2013

Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome.

Israr Ahmad; Kashiff M. Muneer; Iman A. Tamimi; Michelle E. Chang; Muhammad O. Ata; Nabiha Yusuf

The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma.


Photochemistry and Photobiology | 2012

Tualang honey protects keratinocytes from ultraviolet radiation-induced inflammation and DNA damage.

Israr Ahmad; Hugo Jimenez; Nik Soriani Yaacob; Nabiha Yusuf

Malaysian tualang honey possesses strong antioxidant and anti‐inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm−2) irradiation. We found that the treatment of tualang honey inhibited UVB‐induced DNA damage, and enhanced repair of UVB‐mediated formation of cyclobutane pyrimidine dimers and 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine. Treatment of tualang honey inhibited UVB‐induced nuclear translocation of NF‐κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB‐induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB‐induced COX‐2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.


Journal of Investigative Dermatology | 2014

Toll-Like Receptor-4 Deficiency Enhances Repair of UVR-Induced Cutaneous DNA Damage by Nucleotide Excision Repair Mechanism

Israr Ahmad; Eva Simanyi; Purushotham Guroji; Iman A. Tamimi; Hillary J. delaRosa; Anusuiya Nagar; Priyamvada Nagar; Santosh K. Katiyar; Craig A. Elmets; Nabiha Yusuf

UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer.


The American Journal of Chinese Medicine | 2014

The Effects of Baicalin Against UVA-Induced Photoaging in Skin Fibroblasts

Wei Min; Xin Liu; Qihong Qian; Bingjiang Lin; Di Wu; Miaomiao Wang; Israr Ahmad; Nabiha Yusuf; Dan Luo

Ultraviolet A (UVA) radiation contributes to skin photoaging. Baicalin, a plant-derived flavonoid, effectively absorbs UV rays and has been shown to have anti-oxidant and anti-inflammatory properties that may delay the photoaging process. In the current study, cultured human skin fibroblasts were incubated with 50 μg/ml baicalin 24 hours prior to 10 J/cm(2) UVA irradiation. In order to examine the efficacy of baicalin treatment in delaying UVA-induced photoaging, we investigated aging-related markers, cell cycle changes, anti-oxidant activity, telomere length, and DNA damage markers. UVA radiation caused an increased proportion of β-Gal positive cells and reduced telomere length in human skin fibroblasts. In addition, UVA radiation inhibited TGF-β1 secretion, induced G1 phase arrest, reduced SOD and GSH-Px levels, increased MDA levels, enhanced the expression of MMP-1, TIMP-1, p66, p53, and p16 mRNA, reduced c-myc mRNA expression, elevated p53 and p16 protein expression, and reduced c-myc protein expression. Baicalin treatment effectively protected human fibroblasts from these UVA radiation-induced aging responses, suggesting that the underlying mechanism involves the inhibition of oxidative damage and regulation of the expression of senescence-related genes, including those encoding for p53, p66(Shc) and p16.


Photochemistry and Photobiology | 2015

Baicalin Protects Keratinocytes from Toll-like Receptor-4 Mediated DNA Damage and Inflammation Following Ultraviolet Irradiation.

Wei Min; Israr Ahmad; Michelle E. Chang; Erin M. Burns; Qihong Qian; Nabiha Yusuf

UVB radiation contributes to both direct and indirect damage to the skin including the generation of free radicals and reactive oxygen species (ROS), inflammatory responses, immunosuppression and gene mutations, which can ultimately lead to photocarcinogenesis. A plant‐derived flavonoid, baicalin, has been shown to have antioxidant, anti‐inflammatory and free radical scavenging activities. Previous studies from our laboratory have shown that in murine skin, Toll‐like receptor‐4 (TLR4) enhanced both UVB‐induced DNA damage and inflammation. The aim of this study was to investigate the efficacy of baicalin against TLR4‐mediated processes in the murine keratinocyte PAM 212 cell line. Our results demonstrate that treating keratinocytes with baicalin both before and after UV radiation (100 mJ cm−2) significantly inhibited the level of intracellular ROS and decreased cyclobutane pyrimidine dimers and 8‐Oxo‐2′‐deoxyguanosine (8‐oxo‐dG)—markers of DNA damage. Furthermore, cells treated with baicalin demonstrated an inhibition of TLR4 and its downstream signaling molecules, MyD88, TRIF, TRAF6 and IRAK4. TLR4 pathway inhibition resulted in NF‐κB inactivation and down‐regulation of iNOS and COX‐2 protein expression. Taken together, baicalin treatment effectively protected keratinocytes from UVB‐induced inflammatory damage through TLR pathway modulation.


Photochemistry and Photobiology | 2017

Ultraviolet Radiation‐Induced Downregulation of SERCA2 Mediates Activation of NLRP3 Inflammasome in Basal Cell Carcinoma

Israr Ahmad; Kashiff M. Muneer; Michelle E. Chang; Hana M. Nasr; Jacqueline M. Clay; Conway C. Huang; Nabiha Yusuf

Basal cell carcinomas (BCCs) account for majority of skin malignancies in the United States. The incidence of BCCs is strongly associated with exposure of ultraviolet (UV) radiation. Nucleotide‐binding domain, leucine‐rich‐repeat‐containing family, pyrin domain‐containing 3 (NLRP3) inflammasome plays an important role in innate immune responses. Different stimuli such as toxins, microorganisms and particles released from injured cells activate the NLRP3 inflammasome. Activated NLRP3 results in activation of caspase‐1, which cleaves pro‐IL‐1β to active IL‐1β. In this study, we have shown that NLRP3 is expressed in human basal cell carcinomas. The proximal steps in activation of NLRP3 inflammasome are not well understood. Here, we have attempted to elucidate a critical role for Ca2+ mobilization in activation of the NLRP3 inflammasome by UVB exposure using HaCaT keratinocytes. We have demonstrated that UVB exposure blocks Ca2+ mobilization by downregulating the expression of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA2), a component of store‐operated Ca2+ entry that leads to activation of the NLRP3 inflammasome.


Experimental Dermatology | 2017

Loss of INK4a/Arf gene enhances ultraviolet radiation-induced cutaneous tumor development

Israr Ahmad; Purushotham Guroji; Amanda H. DeBrot; Padma Manapragada; Santosh K. Katiyar; Craig A. Elmets; Nabiha Yusuf

The CDKN2A locus encodes for tumor suppressor genes p16INK4a and p14Arf which are frequently inactivated in human skin tumors. The purpose of this study was to determine the relationship between loss of INK4a/Arf activity and inflammation in the development of ultraviolet (UV) radiation‐induced skin tumors. Panels of INK4a/Arf‐/− mice and wild‐type (WT) mice were treated with a single dose of UVB (200 mJ/cm2). For long‐term studies, these mice were irradiated with UVB (200 mJ/cm2) three times weekly for 30 weeks. At the end of the experiment, tissues were harvested from mice and assayed for inflammatory biomarkers and cytokines. A single dose of UVB resulted in a significant increase in reactive oxygen species (ROS) and 8‐dihydroxyguanosine (8‐oxo‐dG) lesions in INK4a/Arf−/− mice compared to WT mice. When subjected to chronic UVB, we found that 100% of INK4a/Arf−/‐ mice had tumors, whereas there were no tumors in WT controls after 24 weeks of UVB exposure. The increase in tumor development correlated with a significant increase in nuclear factor (NF)‐κB, cyclooxygenase‐2 (COX‐2), prostaglandin E2 (PGE2) and its receptors both in UVB‐exposed skin and in the tumors. A significant increase was seen in inflammatory cytokines in skin samples of INK4a/Arf‐/‐ mice following treatment with chronic UVB radiation. Furthermore, significantly more CD11b+Gr1+ myeloid cells were present in UVB‐exposed INK4a/Arf‐/‐ mice compared to WT mice. Our data indicate that by targeting UVB‐induced inflammation, it may be possible to prevent UVB‐induced skin tumors in individuals that carry CDKN2A mutation.


JAMA Dermatology | 2017

Association of Vitamin D Receptor Polymorphisms With the Risk of Nonmelanoma Skin Cancer in Adults

Erin M. Burns; Purushotham Guroji; Israr Ahmad; Hana M. Nasr; Yingxue Wang; Iman A. Tamimi; Elijah Stiefel; Mohammad S. Abdelgawwad; Abdullah Shaheen; Anum Fatima Muzaffar; Lisa M. Bush; Christina Hurst; Russell Griffin; Craig A. Elmets; Nabiha Yusuf

Importance Protective effects of UV-B radiation against nonmelanoma skin cancer (NMSC) are exerted via signaling mechanisms involving the vitamin D receptor (VDR). Recent studies have examined single-nucleotide polymorphisms (SNPs) in the VDR, resulting in contradictory findings as to whether these polymorphisms increase a person’s risk for NMSC. Objective To examine whether the polymorphisms in the VDR gene are associated with the development of NMSC and the demographic characteristics of the participants. Design, Setting, and Participants This case-control study recruited 100 individuals who received a diagnosis of and were being treated for basal cell carcinoma or squamous cell carcinoma (cases) and 100 individuals who were receiving treatment of a condition other than skin cancer (controls) at the dermatology clinics at the Kirklin Clinic of the University of Alabama at Birmingham Hospital between January 1, 2012, and December 31, 2014. All participants completed a questionnaire that solicited information on skin, hair, and eye color; skin cancer family history; and sun exposure history, such as tanning ability and number of severe sunburns experienced throughout life. Blood samples for DNA genotyping were collected from all participants. Main Outcomes and Measures Polymorphisms in the VDR gene (ApaI, BsmI, and TaqI) were assessed to determine the association of polymorphisms with NMSC development and demographic characteristics. &khgr;2 Analysis was used to determine whether genotype frequencies deviated significantly from Hardy-Weinberg equilibrium. Logistic regression was used to calculate odds ratios (ORs) and associated 95% CIs for the identification of factors associated with NMSC diagnosis. A model was created to predict NMSC diagnoses using known risk factors and, potentially, VDR SNPs. Results A total of 97 cases and 100 controls were included. Of the 97 cases, 68 (70%) were men and 29 (30%) were women, with a mean (SD) age of 70 (11) years. Of the 100 controls, 46 (46%) were men and 54 (54%) were women, with a mean (SD) age of 63 (9) years. All participants self-identified as non-Hispanic white. A model including age, sex, and skin color was created to most effectively predict the incidence of skin cancer. Risk factors that significantly increased the odds of an NMSC diagnosis were light skin color (OR, 5.79 [95% CI, 2.79-11.99]), greater number of severe sunburns (OR, 2.59 [95% CI, 1.31-5.10]), light eye color (OR, 2.47 [95% CI, 1.30-4.67]), and less of an ability to tan (OR, 2.35 [95% CI, 1.23-4.48]). The risk factors of family history of NMSC (OR, 1.66 [95% CI, 0.90-3.07]) and light hair color (OR, 1.17 [95% CI, 0.51-2.71]) did not reach statistical significance. Participants with the BsmI SNP were twice as likely to develop NMSC than participants with no mutation (OR, 2.04 [95% CI, 1.02-4.08]; P = .045). Conclusions and Relevance The results of this study are especially useful in the early treatment and prevention of NMSC with chemopreventive agents (for those with the BsmI SNP). A screening for the BsmI SNP may emphasize the importance of sun protection and facilitate skin cancer prevention and, therefore, decrease the skin cancer burden.


Journal of Immunology | 2015

In Vivo Suppression of Heat Shock Protein (HSP)27 and HSP70 Accelerates DMBA-Induced Skin Carcinogenesis by Inducing Antigenic Unresponsiveness to the Initiating Carcinogenic Chemical

Nabiha Yusuf; Tahseen H. Nasti; Israr Ahmad; Sanim Chowdhury; Hasan Mohiuddin; Hui Xu; Mohammad Athar; Craig A. Elmets

Heat shock proteins (HSPs) are constitutively expressed in murine skin. HSP27 is present in the epidermis, and HSP70 can be found in both the epidermis and dermis. The purpose of this study was to investigate the role of these proteins in cutaneous chemical carcinogenesis and to determine whether their effects on cell-mediated immune function were a contributing factor. In vivo inhibition of HSP27 and HSP70 produced a reduction in the T cell–mediated immune response to 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene in C3H/HeN mice and resulted in a state of Ag-specific tolerance. When mice were pretreated with anti-HSP27 and anti-HSP70 Abs in vivo prior to subjecting them to a standard two-stage DMBA/12-O-tetradecanoylphorbol-13-acetate cutaneous carcinogenesis protocol, the percentage of mice with tumors was much greater (p < 0.05) in anti-HSP27– and HSP70–pretreated animals compared with mice pretreated with control Ab. Similar results were obtained when the data were evaluated as the cumulative number of tumors per group. Mice pretreated with HSP27 and HSP70 Abs developed more H-ras mutations and fewer DMBA-specific cytotoxic T lymphocytes. These findings indicate that in mice HSP27 and HSP70 play a key role in the induction of cell-mediated immunity to carcinogenic polyaromatic hydrocarbons. Bolstering the immune response to carcinogenic polyaromatic hydrocarbons may be an effective method for prevention of the tumors that they produce.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2018

High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse

Collin G. Johnson; Vandy P. Stober; Jaime M Cyphert-Daly; Carol S. Trempus; Gordon P. Flake; Valbona Cali; Israr Ahmad; Ronald J. Midura; Mark Aronica; Sadis Matalon; Stavros Garantziotis

Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR). Importantly, the effects of sHA can be antagonized by the physiological counterpart high molecular weight HA (HMWHA). We used a mouse model of house dust mite-induced allergic airway inflammation and demonstrated that instilled HMWHA ameliorated allergic airway inflammation and AHR, even when given after the establishment of allergic sensitization and after challenge exposures. Furthermore, instilled HMWHA reduced the development of HA-HC complexes and the activation of Rho-associated, coiled-coil containing protein kinase 2. We conclude that airway application of HMWHA is a potential treatment for allergic airway inflammation.

Collaboration


Dive into the Israr Ahmad's collaboration.

Top Co-Authors

Avatar

Nabiha Yusuf

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Craig A. Elmets

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Purushotham Guroji

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Iman A. Tamimi

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michelle E. Chang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Willayat Yousuf Wani

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Paterson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Anusuiya Nagar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Carol S. Trempus

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge