Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Issa S. Moody is active.

Publication


Featured researches published by Issa S. Moody.


Science | 2012

Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit

Yongki Choi; Issa S. Moody; Patrick C. Sims; Steven R. Hunt; Brad L. Corso; Israel Perez; Gregory A. Weiss; Philip G. Collins

Observing Protein Dynamics Following the dynamics of protein conformational changes over the relatively long periods of time typical of enzyme kinetics can be challenging. Choi et al. (p. 319; see the Perspective by Lu) were able to observe changes in lysozyme conformation, which changes its electrostatic potential, by using a carbon-nanotube field-effect transistor. Slower hydrolysis steps were compared with faster, but unproductive, hinge motion, and changes in lysozyme activity that occur with pH were shown to arise from differences in the relative amount of time spent in processive versus nonprocessive states. Changes in protein conformation can be detected via changes in electrostatic potential with a carbon nanotube transistor. Tethering a single lysozyme molecule to a carbon nanotube field-effect transistor produced a stable, high-bandwidth transducer for protein motion. Electronic monitoring during 10-minute periods extended well beyond the limitations of fluorescence techniques to uncover dynamic disorder within a single molecule and establish lysozyme as a processive enzyme. On average, 100 chemical bonds are processively hydrolyzed, at 15-hertz rates, before lysozyme returns to its nonproductive, 330-hertz hinge motion. Statistical analysis differentiated single-step hinge closure from enzyme opening, which requires two steps. Seven independent time scales governing lysozyme’s activity were observed. The pH dependence of lysozyme activity arises not from changes to its processive kinetics but rather from increasing time spent in either nonproductive rapid motions or an inactive, closed conformation.


Nano Letters | 2013

Dissecting Single-Molecule Signal Transduction in Carbon Nanotube Circuits with Protein Engineering

Yongki Choi; Tivoli J. Olsen; Patrick C. Sims; Issa S. Moody; Brad L. Corso; Mytrang N. Dang; Gregory A. Weiss; Philip G. Collins

Single-molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, nonfluorescent single-molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems.


Journal of the American Chemical Society | 2013

Electronic Measurements of Single-Molecule Catalysis by cAMP- Dependent Protein Kinase A

Patrick C. Sims; Issa S. Moody; Yongki Choi; Chengjun Dong; Mariam Iftikhar; Brad L. Corso; O. Tolga Gul; Philip G. Collins; Gregory A. Weiss

Single-molecule studies of enzymes open a window into their dynamics and kinetics. A single molecule of the catalytic domain of cAMP-dependent protein kinase A (PKA) was attached to a single-walled carbon nanotube device for long-duration monitoring. The electronic recording clearly resolves substrate binding, ATP binding, and cooperative formation of PKAs catalytically functional, ternary complex. Using recordings of a single PKA molecule extending over 10 min and tens of thousands of binding events, we determine the full transition probability matrix and conversion rates governing formation of the apo, intermediate, and closed enzyme configurations. We also observe kinetic rates varying over 2 orders of magnitude from one second to another. Anti-correlation of the on and off rates for PKA binding to the peptide substrate, but not ATP, demonstrates that regulation of enzyme activity results from altering the stability of the PKA-substrate complex, not its binding to ATP. The results depict a highly dynamic enzyme offering dramatic possibilities for regulated activity, an attribute useful for an enzyme with crucial roles in cell signaling.


Journal of the American Chemical Society | 2012

Single Molecule Dynamics of Lysozyme Processing Distinguishes Linear and Cross-linked Peptidoglycan Substrates

Yongki Choi; Issa S. Moody; Patrick C. Sims; Steven R. Hunt; Brad L. Corso; David E. Seitz; Larry C. Blaszczak; Philip G. Collins; Gregory A. Weiss

The dynamic processivity of individual T4 lysozyme molecules was monitored in the presence of either linear or cross-linked peptidoglycan substrates. Single-molecule monitoring was accomplished using a novel electronic technique in which lysozyme molecules were tethered to single-walled carbon nanotube field-effect transistors through pyrene linker molecules. The substrate-driven hinge-bending motions of lysozyme induced dynamic electronic signals in the underlying transistor, allowing long-term monitoring of the same molecule without the limitations of optical quenching or bleaching. For both substrates, lysozyme exhibited processive low turnover rates of 20-50 s(-1) and rapid (200-400 s(-1)) nonproductive motions. The latter nonproductive binding events occupied 43% of the enzymes time in the presence of the cross-linked peptidoglycan but only 7% with the linear substrate. Furthermore, lysozyme catalyzed the hydrolysis of glycosidic bonds to the end of the linear substrate but appeared to sidestep the peptide cross-links to zigzag through the wild-type substrate.


Protein Science | 2015

D‐AKAP2:PKA RII:PDZK1 ternary complex structure: Insights from the nucleation of a polyvalent scaffold

Ganapathy Sarma; Issa S. Moody; Ronit Ilouz; Ryan H. Phan; Banumathi Sankaran; Randy A. Hall; Susan S. Taylor

A‐kinase anchoring proteins (AKAPs) regulate cAMP‐dependent protein kinase (PKA) signaling in space and time. Dual‐specific AKAP2 (D‐AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D‐AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α‐helix to PKA and a β‐strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D‐AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D‐AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C‐terminus of D‐AKAP2, which contains two binding motifs—the D‐AKAP2AKB and the PDZ motif—that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D‐AKAP2AKB binds to the D/D domain of the R‐subunit and the C‐terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D‐AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.


PLOS ONE | 2013

Protein engineering with biosynthesized libraries from Bordetella bronchiseptica bacteriophage.

Tom Z. Yuan; Cathie M. Overstreet; Issa S. Moody; Gregory A. Weiss

Phage display offers a powerful approach to engineer protein affinity. A naturally occurring analog to phage display, the Bordetella bronchiseptica bacteriophage (BP) employs a highly variable protein termed the major tropism determinant (Mtd) to recognize its dynamic host. Propagation of BP provides a self-made phage library (SMPL) with vast numbers of phage particles, each displaying a single Mtd variant. We report applying the diversity of the BP-SMPL to access a tyrosine-rich library of Mtd variants. Expression of the SMPL-engineered Mtd variant as a GST-bound fusion protein demonstrated specific binding to the target T4 lysozyme with dissociation constants in the sub-micromolar range. The results guide future experiments with SMPLs applied to protein engineering.


Bioorganic & Medicinal Chemistry Letters | 2012

In vitro evolution of an HIV integrase binding protein from a library of C-terminal domain γS-crystallin variants.

Issa S. Moody; Shawn C. Verde; Cathie M. Overstreet; W. Edward Robinson; Gregory A. Weiss

A protein without natural binding functions was engineered to bind HIV-1 integrase. Phage display selections applied a library of variants based on the C-terminal domain of the eye lens protein human γS-crystallin. Multiple loop regions were altered to encode libraries with ≈3.6 × 10(11) different variants. A crystallin variant, termed integrase binding protein-10 (IBP-10), inhibits integrase catalysis with nanomolar K(i) values. IBP-10 interacts with the integrase C-terminal domain and inhibits integrase substrate affinity. This allosteric mechanism allows IBP-10 to inhibit drug-resistant integrase variants. The results demonstrate the applicability of the crystallin scaffold for the discovery of binding partners and enzyme inhibitors.


Archive | 2012

Electronic device for monitoring single molecule dynamics

Philip G. Collins; Gregory A. Weiss; Yongki Choi; Issa S. Moody


Journal of the American Chemical Society | 2012

Correction to Single-Molecule Dynamics of Lysozyme Processing Distinguishes Linear and Cross-Linked Peptidoglycan Substrates

Yongki Choi; Issa S. Moody; Patrick C. Sims; Steven R. Hunt; Brad L. Corso; David E. Seitz; Larry C. Blaszczak; Philip G. Collins; Gregory A. Weiss


Bulletin of the American Physical Society | 2013

Single molecule processivity and dynamics of cAMP-dependent protein kinase (PKA)

Patrick C. Sims; Yongki Choi; Chengjun Dong; Issa S. Moody; Mariam Iftikhar; O. Tolga Gul; Gregory A. Weiss; Philip G. Collins

Collaboration


Dive into the Issa S. Moody's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongki Choi

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad L. Corso

University of California

View shared research outputs
Top Co-Authors

Avatar

O. Tolga Gul

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven R. Hunt

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengjun Dong

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge