Issaka Yougbaré
Canadian Blood Services
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Issaka Yougbaré.
Advances in Hematology | 2012
Conglei Li; June Li; Yan-Yan Li; Sean Lang; Issaka Yougbaré; Guangheng Zhu; Pingguo Chen; Heyu Ni
Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc.), which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs), such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1). Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions.
Nature Communications | 2015
June Li; Dianne E. van der Wal; Guangheng Zhu; Miao Xu; Issaka Yougbaré; Li Ma; Brian Vadasz; Naadiya Carrim; Renata Grozovsky; Min Ruan; Lingyan Zhu; Qingshu Zeng; Lili Tao; Zhimin Zhai; Jun Peng; Ming Hou; Valery Leytin; John Freedman; Karin M. Hoffmeister; Heyu Ni
Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc–FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell–Morell receptors, which is fundamentally different from the classical Fc–FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.
Journal of Clinical Investigation | 2015
Issaka Yougbaré; Sean Lang; Hong Yang; Pingguo Chen; Xu Zhao; Wei-She Tai; Darko Zdravic; Brian Vadasz; Conglei Li; Siavash Piran; Alexandra H. Marshall; Guangheng Zhu; Heidi Tiller; Mette Kjær Killie; Shelley Boyd; Howard Leong-Poi; Xiao-Yan Wen; Bjørn Skogen; S. Lee Adamson; John Freedman; Heyu Ni
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening disease in which intracranial hemorrhage (ICH) is the major risk. Although thrombocytopenia, which is caused by maternal antibodies against β3 integrin and occasionally by maternal antibodies against other platelet antigens, such as glycoprotein GPIbα, has long been assumed to be the cause of bleeding, the mechanism of ICH has not been adequately explored. Utilizing murine models of FNAIT and a high-frequency ultrasound imaging system, we found that ICH only occurred in fetuses and neonates with anti-β3 integrin-mediated, but not anti-GPIbα-mediated, FNAIT, despite similar thrombocytopenia in both groups. Only anti-β3 integrin-mediated FNAIT reduced brain and retina vessel density, impaired angiogenic signaling, and increased endothelial cell apoptosis, all of which were abrogated by maternal administration of intravenous immunoglobulin (IVIG). ICH and impairment of retinal angiogenesis were further reproduced in neonates by injection of anti-β3 integrin, but not anti-GPIbα antisera. Utilizing cultured human endothelial cells, we found that cell proliferation, network formation, and AKT phosphorylation were inhibited only by murine anti-β3 integrin antisera and human anti-HPA-1a IgG purified from mothers with FNAIT children. Our data suggest that fetal hemostasis is distinct and that impairment of angiogenesis rather than thrombocytopenia likely causes FNAIT-associated ICH. Additionally, our results indicate that maternal IVIG therapy can effectively prevent this devastating disorder.
Blood | 2015
Li Ma; Elisa Simpson; June Li; Min Xuan; Miao Xu; Laura D. Baker; Yan Shi; Issaka Yougbaré; Xiaozhong Wang; Guangheng Zhu; Pingguo Chen; Gérald J. Prud'homme; Alan H. Lazarus; John Freedman; Heyu Ni
Immune thrombocytopenia (ITP) is a common autoimmune bleeding disorder characterized by autoantibodies targeting platelet surface proteins, most commonly GPIIbIIIa (αIIbβ3 integrin), leading to platelet destruction. Recently, CD8(+) cytotoxic T-lymphocytes (CTLs) targeting platelets and megakaryocytes have also been implicated in thrombocytopenia. Because steroids are the most commonly administered therapy for ITP worldwide, we established both active (immunized splenocyte engraftment) and passive (antibody injection) murine models of steroid treatment. Surprisingly, we found that, in both models, CD8(+) T cells limited the severity of the thrombocytopenia and were required for an efficacious response to steroid therapy. Conversely, CD8(+) T-cell depletion led to more severe thrombocytopenia, whereas CD8(+) T-cell transfusion ameliorated thrombocytopenia. CD8(+) T-regulatory cell (Treg) subsets were detected, and interestingly, dexamethasone (DEX) treatment selectively expanded CD8(+) Tregs while decreasing CTLs. In vitro coculture studies revealed CD8(+) Tregs suppressed CD4(+) and CD19(+) proliferation, platelet-associated immunoglobulin G generation, CTL cytotoxicity, platelet apoptosis, and clearance. Furthermore, we found increased production of anti-inflammatory interleukin-10 in coculture studies and in vivo after steroid treatment. Thus, we uncovered subsets of CD8(+) Tregs and demonstrated their potent immunosuppressive and protective roles in experimentally induced thrombocytopenia. The data further elucidate mechanisms of steroid treatment and suggest therapeutic potential for CD8(+) Tregs in immune thrombocytopenia.
Seminars in Fetal & Neonatal Medicine | 2016
Darko Zdravic; Issaka Yougbaré; Brian Vadasz; Conglei Li; Alexandra H. Marshall; Pingguo Chen; Jens Kjeldsen-Kragh; Heyu Ni
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is an alloimmune disorder resulting from platelet opsonization by maternal antibodies that destroy fetal platelets. The major risk of FNAIT is severe bleeding, particularly intracranial hemorrhage. Miscarriage has also been reported but the incidence requires further study. Analogous to adult autoimmune thrombocytopenia (ITP), the major target antigen in FNAIT is the platelet membrane glycoprotein (GP)IIbIIIa. FNAIT caused by antibodies against platelet GPIbα or other antigens has also been reported, but the reported incidence of the anti-GPIbα-mediated FNAIT is far lower than in ITP. To date, the maternal immune response to fetal platelet antigens is still not well understood and it is unclear why bleeding is more severe in FNAIT than in ITP. In this review, we introduce the pathogenesis of FNAIT, particularly those new discoveries from animal models, and discuss possible improvements for the diagnosis, therapy, and prevention of this devastating disease.
Genes and Diseases | 2015
Brian Vadasz; Pingguo Chen; Issaka Yougbaré; Darko Zdravic; June Li; Conglei Li; Naadiya Carrim; Heyu Ni
Platelets play critical roles in hemostasis and thrombosis. Emerging evidence indicates that they are versatile cells and also involved in many other physiological processes and disease states. Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life threatening bleeding disorder caused by fetal platelet destruction by maternal alloantibodies developed during pregnancy. Gene polymorphisms cause platelet surface protein incompatibilities between mother and fetus, and ultimately lead to maternal alloimmunization. FNAIT is the most common cause of intracranial hemorrhage in full-term infants and can also lead to intrauterine growth retardation and miscarriage. Proper diagnosis, prevention and treatment of FNAIT is challenging due to insufficient knowledge of the disease and a lack of routine screening as well as its frequent occurrence in first pregnancies. Given the ethical difficulties in performing basic research on human fetuses and neonates, animal models are essential to improve our understanding of the pathogenesis and treatment of FNAIT. The aim of this review is to provide an overview on platelets, hemostasis and thrombocytopenia with a focus on the advancements made in FNAIT by utilizing animal models.
Nature Communications | 2017
Issaka Yougbaré; Wei-She Tai; Darko Zdravic; Brigitta Elaine Oswald; Sean Lang; Guangheng Zhu; Howard Leong-Poi; Dawei Qu; Lisa Yu; Caroline Dunk; Jianhong Zhang; John G. Sled; Stephen J. Lye; Jelena Brkić; Chun Peng; Petter Höglund; B. Anne Croy; S. Lee Adamson; Xiao-Yan Wen; Duncan J. Stewart; John Freedman; Heyu Ni
Miscarriage and intrauterine growth restriction (IUGR) are devastating complications in fetal/neonatal alloimmune thrombocytopenia (FNAIT). We previously reported the mechanisms for bleeding diatheses, but it is unknown whether placental, decidual immune cells or other abnormalities at the maternal–fetal interface contribute to FNAIT. Here we show that maternal immune responses to fetal platelet antigens cause miscarriage and IUGR that are associated with vascular and immune pathologies in murine FNAIT models. Uterine natural killer (uNK) cell recruitment and survival beyond mid-gestation lead to elevated NKp46 and CD107 expression, perforin release and trophoblast apoptosis. Depletion of NK cells restores normal spiral artery remodeling and placental function, prevents miscarriage, and rescues hemorrhage in neonates. Blockade of NK activation receptors (NKp46, FcɣRIIIa) also rescues pregnancy loss. These findings shed light on uNK antibody-dependent cell-mediated cytotoxicity of invasive trophoblasts as a pathological mechanism in FNAIT, and suggest that anti-NK cell therapies may prevent immune-mediated pregnancy loss and ameliorate FNAIT.Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is a gestational disease caused by maternal immune responses against fetal platelets. Using a FNAIT mouse model and human trophoblast cell lines, here the authors show that uterine natural killer cell-mediated trophoblast apoptosis contributes to FNAIT pathogenesis.
Journal of Pediatrics and Pediatric Medicine | 2018
Issaka Yougbaré; Darko Zdravic; Heyu Ni; Toronto; On Canada; On K G J; Canada; On M S A; blockquote
Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening disease. Maternal alloimmune responses against fetal platelet antigens in FNAIT may lead to clinical complications including bleeding disorders, intrauterine growth restriction (IUGR) and in severe cases fetal death (miscarriage). It has been long suspected that thrombocytopenia may be the reason for bleeding disorders in FNAIT, recent studies from us and other groups, however, suggested that the anti-angiogenic effects of anti-platelet antibodies may play a key role in bleeding, particularly in intracranial hemorrhages. Our earlier studies using murine models also suggested that some anti-platelet antibodies can activate platelets and initiate thrombotic events in the placenta, which may contribute to miscarriage. Most recently, we found that maternal anti-β3 integrin antibodies can target fetal allogenic trophoblasts, form immune complexes, and generate binding sites for natural killer (NK) cell Fcγ receptors. Uterine NK cell activation through NKp46 and perforin release caused trophoblast apoptosis, impaired spiral artery remodeling, and ultimately lead to IUGR and/or fetal death. We found that NK cell-mediated placental pathologies are preventable by anti-NK antibody treatments, which may have translational importance. This mini-review mainly discussed the latest discoveries regarding activated uterine NK cells-mediated miscarriage. Future research on placental inflammation and remodeling should open new avenues for interventions in FNAIT-mediated pregnancy failures.
Molecular Therapy | 2018
Jelena Brkić; Caroline Dunk; Jacob O’Brien; Guodong Fu; Lubna Nadeem; Yan-ling Wang; David Rosman; Mohamed Salem; Oksana Shynlova; Issaka Yougbaré; Heyu Ni; Stephen J. Lye; Chun Peng
Preeclampsia (PE) is the leading cause of maternal and neonatal morbidity and mortality. Defects in trophoblast invasion, differentiation of endovascular extravillous trophoblasts (enEVTs), and spiral artery remodeling are key factors in PE development. There are no markers clinically available to predict PE, leaving expedited delivery as the only effective therapy. Dysregulation of miRNA in clinical tissues and maternal circulation have opened a new avenue for biomarker discovery. In this study, we investigated the role of miR-218-5p in PE development. miR-218-5p was highly expressed in EVTs and significantly downregulated in PE placentas. Using first-trimester trophoblast cell lines and human placental explants, we found that miR-218-5p overexpression promoted, whereas anti-miR-218-5p suppressed, trophoblast invasion, EVT outgrowth, and enEVT differentiation. Furthermore, miR-218-5p accelerated spiral artery remodeling in a decidua-placenta co-culture. The effect of miR-218-5p was mediated by the suppression of transforming growth factor (TGF)-β2 signaling. Silencing of TGFB2 mimicked, whereas treatment with TGF-β2 partially reversed, the effects of miR-218-5p. Taken together, these findings demonstrate that miR-218-5p promotes trophoblast invasion and enEVT differentiation through a novel miR-218-5p-TGF-β2 pathway. This study elucidates the role of an miRNA in enEVT differentiation and spiral artery remodeling and suggests that downregulation of miR-218-5p contributes to PE development.
Oncotarget | 2015
Issaka Yougbaré; Darko Zdravic; Heyu Ni