Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Issay Kitabayashi is active.

Publication


Featured researches published by Issay Kitabayashi.


Molecular and Cellular Biology | 2004

Leukemia Proto-Oncoprotein MLL Forms a SET1-Like Histone Methyltransferase Complex with Menin To Regulate Hox Gene Expression

Akihiko Yokoyama; Zhong Wang; Joanna Wysocka; Mrinmoy Sanyal; Deborah J. Aufiero; Issay Kitabayashi; Winship Herr; Michael L. Cleary

ABSTRACT MLL (for mixed-lineage leukemia) is a proto-oncogene that is mutated in a variety of human leukemias. Its product, a homolog of Drosophila melanogaster trithorax, displays intrinsic histone methyltransferase activity and functions genetically to maintain embryonic Hox gene expression. Here we report the biochemical purification of MLL and demonstrate that it associates with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including a homolog of Ash2, another Trx-G group protein. Two other members of the novel MLL complex identified here are host cell factor 1 (HCF-1), a transcriptional coregulator, and the related HCF-2, both of which specifically interact with a conserved binding motif in the MLLN (p300) subunit of MLL and provide a potential mechanism for regulating its antagonistic transcriptional properties. Menin, a product of the MEN1 tumor suppressor gene, is also a component of the 1-MDa MLL complex. Abrogation of menin expression phenocopies loss of MLL and reveals a critical role for menin in the maintenance of Hox gene expression. Oncogenic mutant forms of MLL retain an ability to interact with menin but not other identified complex components. These studies link the menin tumor suppressor protein with the MLL histone methyltransferase machinery, with implications for Hox gene expression in development and leukemia pathogenesis.


Nature | 2007

Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1

Masahiro Ono; Hiroko Yaguchi; Naganari Ohkura; Issay Kitabayashi; Yuko Nagamura; Takashi Nomura; Yoshiki Miyachi; Toshihiko Tsukada; Shimon Sakaguchi

Naturally arising CD25+CD4+ regulatory T cells (TR cells) are engaged in the maintenance of immunological self-tolerance and immune homeostasis by suppressing aberrant or excessive immune responses, such as autoimmune disease and allergy. TR cells specifically express the transcription factor Foxp3, a key regulator of TR-cell development and function. Ectopic expression of Foxp3 in conventional T cells is indeed sufficient to confer suppressive activity, repress the production of cytokines such as interleukin-2 (IL-2) and interferon-gamma (IFN-γ), and upregulate TR-cell-associated molecules such as CD25, cytotoxic T-lymphocyte-associated antigen-4, and glucocorticoid-induced TNF-receptor-family-related protein. However, the method by which Foxp3 controls these molecular events has yet to be explained. Here we show that the transcription factor AML1 (acute myeloid leukaemia 1)/Runx1 (Runt-related transcription factor 1), which is crucially required for normal haematopoiesis including thymic T-cell development, activates IL-2 and IFN-γ gene expression in conventional CD4+ T cells through binding to their respective promoters. In natural TR cells, Foxp3 interacts physically with AML1. Several lines of evidence support a model in which the interaction suppresses IL-2 and IFN-γ production, upregulates TR-cell-associated molecules, and exerts suppressive activity. This transcriptional control of TR-cell function by an interaction between Foxp3 and AML1 can be exploited to control physiological and pathological T-cell-mediated immune responses.


Cancer Cell | 2010

A Higher-Order Complex Containing AF4 and ENL Family Proteins with P-TEFb Facilitates Oncogenic and Physiologic MLL-Dependent Transcription

Akihiko Yokoyama; Min Lin; Alpana Naresh; Issay Kitabayashi; Michael L. Cleary

AF4 and ENL family proteins are frequently fused with MLL, and they comprise a higher order complex (designated AEP) containing the P-TEFb transcription elongation factor. Here, we show that AEP is normally recruited to MLL-target chromatin to facilitate transcription. In contrast, MLL oncoproteins fused with AEP components constitutively form MLL/AEP hybrid complexes to cause sustained target gene expression, which leads to transformation of hematopoietic progenitors. Furthermore, MLL-AF6, an MLL fusion with a cytoplasmic protein, does not form such hybrid complexes, but nevertheless constitutively recruits AEP to target chromatin via unknown alternative mechanisms. Thus, AEP recruitment is an integral part of both physiological and pathological MLL-dependent transcriptional pathways. Bypass of its normal recruitment mechanisms is the strategy most frequently used by MLL oncoproteins.


The EMBO Journal | 2006

Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation

Yukiko Aikawa; Lan Anh Nguyen; Kyoichi Isono; Nobuyuki Takakura; Yusuke Tagata; M. Lienhard Schmitz; Haruhiko Koseki; Issay Kitabayashi

Histone acetyltransferases (HATs) p300 and CREB‐binding protein (CBP) function as co‐activators for a variety of sequence‐specific transcription factors, including AML1. Here, we report that homeodomain‐interacting protein kinase‐2 (HIPK2) forms a complex with AML1 and p300, and phosphorylates both AML1 and p300 to stimulate transcription activation as well as HAT activities. Phosphorylation of p300 is triggered by phosphorylated AML1 as well as by PU.1, c‐MYB, c‐JUN and c‐FOS, and is inhibited by dominant‐negative HIPK2. Phosphorylation of p300 and AML1 is impaired in Hipk1/2 double‐deficient mouse embryos. Double‐deficient mice exhibit defects in primitive/definitive hematopoiesis, vasculogenesis, angiogenesis and neural tube closure. These phenotypes are in part similar to those observed in p300‐ and CBP‐deficient mice. HIPK2 also phosphorylates another co‐activator, MOZ, in an AML1‐dependent manner. We discuss a possible mechanism by which transcription factors could regulate local histone acetylation and transcription of their target genes.


Blood | 2011

The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis

Yuta Mishima; Satoru Miyagi; Atsunori Saraya; Masamitsu Negishi; Mitsuhiro Endoh; Takaho A. Endo; Tetsuro Toyoda; Jun Shinga; Takuo Katsumoto; Tetsuhiro Chiba; Naoto Yamaguchi; Issay Kitabayashi; Haruhiko Koseki; Atsushi Iwama

The histone acetyltransferases (HATs) of the MYST family include TIP60, HBO1, MOZ/MORF, and MOF and function in multisubunit protein complexes. Bromodomain-containing protein 1 (BRD1), also known as BRPF2, has been considered a subunit of the MOZ/MORF H3 HAT complex based on analogy with BRPF1 and BRPF3. However, its physiologic function remains obscure. Here we show that BRD1 forms a novel HAT complex with HBO1 and regulates erythropoiesis. Brd1-deficient embryos showed severe anemia because of impaired fetal liver erythropoiesis. Biochemical analyses revealed that BRD1 bridges HBO1 and its activator protein, ING4. Genome-wide mapping in erythroblasts demonstrated that BRD1 and HBO1 largely colocalize in the genome and target key developmental regulator genes. Of note, levels of global acetylation of histone H3 at lysine 14 (H3K14) were profoundly decreased in Brd1-deficient erythroblasts and depletion of Hbo1 similarly affected H3K14 acetylation. Impaired erythropoiesis in the absence of Brd1 accompanied reduced expression of key erythroid regulator genes, including Gata1, and was partially restored by forced expression of Gata1. Our findings suggest that the Hbo1-Brd1 complex is the major H3K14 HAT required for transcriptional activation of erythroid developmental regulator genes.


Molecular and Cellular Biology | 2004

Menin Missense Mutants Associated with Multiple Endocrine Neoplasia Type 1 Are Rapidly Degraded via the Ubiquitin-Proteasome Pathway

Hiroko Yaguchi; Naganari Ohkura; Maho Takahashi; Yuko Nagamura; Issay Kitabayashi; Toshihiko Tsukada

ABSTRACT MEN1 is a tumor suppressor gene that is responsible for multiple endocrine neoplasia type 1 (MEN1) and that encodes a 610-amino-acid protein, called menin. While the majority of germ line mutations identified in MEN1 patients are frameshift and nonsense mutations resulting in truncation of the menin protein, various missense mutations have been identified whose effects on menin activity are unclear. For this study, we analyzed a series of menin proteins with single amino acid alterations and found that all of the MEN1-causing missense mutations tested led to greatly diminished levels of the affected proteins in comparison with wild-type and benign polymorphic menin protein levels. We demonstrate here that the reduced levels of the mutant proteins are due to rapid degradation via the ubiquitin-proteasome pathway. Furthermore, the mutants, but not wild-type menin, interact both with the molecular chaperone Hsp70 and with the Hsp70-associated ubiquitin ligase CHIP, and the overexpression of CHIP promotes the ubiquitination of the menin mutants in vivo. These findings reveal that MEN1-causing missense mutations lead to a loss of function of menin due to enhanced proteolytic degradation, which may be a common mechanism for inactivating tumor suppressor gene products in familial cancer.


Nature Medicine | 2010

PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2

Yukiko Aikawa; Takuo Katsumoto; Pu Zhang; Haruko Shima; Mika Shino; Kiminori Terui; Etsuro Ito; Hiroaki Ohno; E. Richard Stanley; Harinder Singh; Daniel G. Tenen; Issay Kitabayashi

Leukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells. The MOZ fusion proteins MOZ-TIF2 and MOZ-CBP interacted with the transcription factor PU.1 to stimulate the expression of macrophage colony–stimulating factor receptor (CSF1R, also known as M-CSFR, c-FMS or CD115). Studies using PU.1-deficient mice showed that PU.1 is essential for the ability of MOZ-TIF2 to establish and maintain AML stem cells. Cells expressing high amounts of CSF1R (CSF1Rhigh cells), but not those expressing low amounts of CSF1R (CSF1Rlow cells), showed potent leukemia-initiating activity. Using transgenic mice expressing a drug-inducible suicide gene controlled by the CSF1R promoter, we cured AML by ablation of CSF1Rhigh cells. Moreover, induction of AML was suppressed in CSF1R-deficient mice and CSF1R inhibitors slowed the progression of MOZ-TIF2–induced leukemia. Thus, in this subtype of AML, leukemia stem cells are contained within the CSF1Rhigh cell population, and we suggest that targeting of PU.1-mediated upregulation of CSF1R expression might be a useful therapeutic approach.


Biochemical and Biophysical Research Communications | 2009

Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX.

Kazutsune Yamagata; Issay Kitabayashi

Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of gamma-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.


Proceedings of the National Academy of Sciences of the United States of America | 2013

MOZ increases p53 acetylation and premature senescence through its complex formation with PML

Susumu Rokudai; Oleg Laptenko; Suzzette M. Arnal; Yoichi Taya; Issay Kitabayashi; Carol Prives

Monocytic leukemia zinc finger (MOZ)/KAT6A is a MOZ, Ybf2/Sas3, Sas2, Tip60 (MYST)-type histone acetyltransferase that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and Ets family transcription factor PU.1-dependent transcription. We previously reported that MOZ directly interacts with p53 and is essential for p53-dependent selective regulation of p21 expression. We show here that MOZ is an acetyltransferase of p53 at K120 and K382 and colocalizes with p53 in promyelocytic leukemia (PML) nuclear bodies following cellular stress. The MOZ–PML–p53 interaction enhances MOZ-mediated acetylation of p53, and this ternary complex enhances p53-dependent p21 expression. Moreover, we identified an Akt/protein kinase B recognition sequence in the PML-binding domain of MOZ protein. Akt-mediated phosphorylation of MOZ at T369 has a negative effect on complex formation between PML and MOZ. As a result of PML-mediated suppression of Akt, the increased PML–MOZ interaction enhances p21 expression and induces p53-dependent premature senescence upon forced PML expression. Our research demonstrates that MOZ controls p53 acetylation and transcriptional activity via association with PML.


Oncogene | 2007

Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription.

Li Xl; Arai Y; Hironori Harada; Yutaka Shima; Hitoshi Yoshida; Susumu Rokudai; Yukiko Aikawa; Akiro Kimura; Issay Kitabayashi

The AML1 transcription factor complex is the most frequent target of leukemia-associated chromosomal translocations. Homeodomain-interacting protein kinase 2 (HIPK2) is a part of the AML1 complex and activates AML1-mediated transcription. However, chromosomal translocations and mutations of HIPK2 have not been reported. In the current study, we screened mutations of the HIPK2 gene in 50 cases of acute myeloid leukemia (AML) and in 80 cases of myelodysplastic syndrome (MDS). Results indicated there were two missense mutations (R868W and N958I) in the speckle-retention signal (SRS) domain of HIPK2. Subcellular localization analyses indicated that the two mutants were largely localized to nuclear regions with conical or ring shapes, and were somewhat diffused in the nucleus, in contrast to the wild type, which were mainly localized in nuclear speckles. The mutations impaired the overlapping localization of AML1 and HIPK2. The mutants showed decreased activities and a dominant-negative function over wild-type protein in AML1- and p53-dependent transcription. These findings suggest that dysfunction of HIPK2 may play a role in the pathogenesis of leukemia.

Collaboration


Dive into the Issay Kitabayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoichi Taya

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge