Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where István Sebe is active.

Publication


Featured researches published by István Sebe.


International Journal of Pharmaceutics | 2013

Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique.

István Sebe; Barnabás Szabó; Zsombor Kristóf Nagy; Dóra Szabó; László Zsidai; Béla Kocsis; Romána Zelkó

Poly(vinylpyrrolidone)/poly(vinylpyrrolidone-vinylacetate)/iodine nanofibers of different polymer ratios were successfully prepared by a high-speed rotary spinning technique. The obtained fiber mats were subjected to detailed morphological analysis using an optical and scanning electron microscope (SEM), while the supramolecular structure of the samples was analyzed by positron annihilation lifetime spectroscopy (PALS). The maximum dissolved iodine of the fiber samples was determined, and microbiological assay was carried out to test their effect on the bacterial growth. SEM images showed that the polymer fibers were linear, homogenous, and contained no beads. The PALS results, both the o-positronium (o-Ps) lifetime values and distributions, revealed the changes of the free volume holes of fibers as a function of their composition and the presence of iodine. The micro- and macrostructural characterisation of polymer fiber mats enabled the selection of the required composition from the point of their applicability as a wound dressing.


Current Medicinal Chemistry | 2015

Polymers and Formulation Strategies of Nanofibrous Systems for Drug Delivery Application and Tissue Engineering

István Sebe; Romána Zelkó; Dóra Szabó

During the last decade, the formulation of nanofibrous materials loaded with different drugs for biomedical applications has evoked considerable interest. The large specific surface area, the special micro- and macrostructure of fiber mats, the possibility for gradual release and site-specific local delivery of the active compounds lead to cytotoxicity decrease and enhancement of the therapeutic effect of drugs and implants. The present review details the different spinning techniques applied for the design of micro- and nanofibrous drug delivery systems. It furthermore deals with the use of various polymers that are capable for the formation of fiber scaffolds of various biomedical applications.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Microstructural analysis of the fast gelling freeze-dried sodium hyaluronate.

Andrea Krüger-Szabó; Zoltán Aigner; Emese Balogh; István Sebe; Romána Zelkó; István Antal

Although sodium hyaluronate is a very unstable and heat sensitive molecule, it can remain relatively stable during the freeze-drying process. Aqueous sodium hyaluronate (NaHA) gels were prepared and the obtained samples were freeze-dried. The freeze-dried NaHA samples showed fast gelling ability meanwhile preserved their initial viscoelasticity even after reconstitution. The microstructure of gels obtained from raw substance and freeze-dried NaHA samples was characterized with positron annihilation lifetime spectroscopy and X-ray diffraction patterns while their functionality-related macrostructural properties were tested based on their rheological behavior. The presence of phosphate salts improved the formation of ordered supramolecular structure retaining water in the free volume holes of the polymer chains characterized with decreased ortho-positronium lifetime values. This property may be advantageous in the development of a freeze-dried NaHA injection dosage form.


International Journal of Pharmaceutics | 2014

Preformulation study of fiber formation and formulation of drug-loaded microfiber based orodispersible tablets for in vitro dissolution enhancement.

Péter Szabó; István Sebe; Romána Zelkó

Preformulation study of rotary spun hydroxypropyl cellulose fibers was carried out using the combination of textural characterization of gels in the concentration range of 42-60% w/w and optical microscopic evaluation of formed fibers. High adhesiveness values resulted in bead formation at lower polymer concentration, meanwhile fiber formation was hindered when high adhesiveness values were associated with high polymer content. The optimum gel concentration for fiber formation was given to 50% w/w. Drug loaded microfibers were prepared using a model drug of biopharmaceutical drug classification system class II. Fibers were milled, sieved and mixed with tableting excipients in order to directly compress orodispersible tablets. Hardness, friability, in vitro disintegration time values complied with the pharmacopoeial requirements. In vitro dissolution profiles obtained from three distinct dissolution media (pH 1.0; 4.5; 6.8) were quite differentiated compared to the compressed physical mixture of the same composition. Difference and similarity factors confirmed that the drug dissolution from microfiber based formula was almost independent from the pH value of the media. X-ray diffraction patterns indicated that the drug embedded in microfibers was in amorphous state, and the decrease of o-Ps lifetime values suggested that fiber formation enabled the development of a more ordered fibrous system.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Preparation and characterization of nanofibrous sheets for enhanced oral dissolution of nebivolol hydrochloride.

Emese Sipos; Zoltán Szabó; Emőke Rédai; Péter Szabó; István Sebe; Romána Zelkó

Nebivolol-loaded electrospun nanofibrous sheets were prepared for the dissolution enhancement of the active with the aim of improving its oral bioavailability. Physicochemical characterization of nanofibers including differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy were carried out in order to track the physicochemical changes related to the electrospinning process. The obtained results unanimously indicated the amorphous transition of nebivolol as a result of electrospinning, furthermore supramolecular ordering of chains of polyvinyl alcohol matrix could be revealed by positron annihilation lifetime spectroscopy. The crystalline-amorphous conversion of the active, along with the increased specific surface area of the nanofibers enabled rapid and complete dissolution. More than twice amount of active released from the fibrous sheets than from the commercial tablets. In contrast to the control tablets, the dissolution was complete and was not influenced by the pH of the applied media.


Drug Development and Industrial Pharmacy | 2015

Comparison of directly compressed vitamin B12 tablets prepared from micronized rotary-spun microfibers and cast films

István Sebe; Zsolt Bodai; Zsuzsanna Eke; Péter Szabó; Romána Zelkó

Abstract Fiber-based dosage forms are potential alternatives of conventional dosage forms from the point of the improved extent and rate of drug dissolution. Rotary-spun polymer fibers and cast films were prepared and micronized in order to direct compress after homogenization with tabletting excipients. Particle size distribution of powder mixtures of micronized fibers and films homogenized with tabletting excipients were determined by laser scattering particle size distribution analyzer. Powder rheological behavior of the mixtures containing micronized fibers and cast films was also compared. Positron annihilation lifetime spectroscopy was applied for the microstructural characterization of micronized fibers and films. The water-soluble vitamin B12 release from the compressed tablets was determined. It was confirmed that the rotary spinning method resulted in homogeneous supramolecularly ordered powder mixture, which was successfully compressed after homogenization with conventional tabletting excipients. The obtained directly compressed tablets showed uniform drug release of low variations. The results highlight the novel application of micronized rotary-spun fibers as intermediate for further processing reserving the original favorable powder characteristics of fibrous systems.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Tracking of crystalline-amorphous transition of carvedilol in rotary spun microfibers and their formulation to orodispersible tablets for in vitro dissolution enhancement.

Péter Szabó; István Sebe; Bernadett Stiedl; Romána Zelkó

Physicochemical characterization of microfibers including powder X-ray diffraction, differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, and positron annihilation spectroscopy were used to track the crystalline-amorphous transition of carvedilol during formulation and stability testing. The applied methods unanimously indicated the amorphous transition of carvedilol in the course of rotary spinning, furthermore a supramolecular ordering of chains of polymer matrix was revealed out by positron annihilation spectroscopy. The accelerated stability study (40±2°C/75±5% RH, for 4 weeks) indicated a large stress tolerance capacity of fibers, since only a partial crystallization of the active compound was observable at the last sampling point. To demonstrate possible utilization of microfibers, orodispersible tablets containing 10mg of carvedilol were successfully prepared by direct compression applying common tableting excipients. All of the investigated tablet parameters (hardness, friability, in vitro disintegration time) complied with the pharmacopoeial requirements. The performed dissolution (pH 1.0 and 6.8) study indicated that the drug dissolution from the microfiber based formula was rapid, complete and independent from the pH of the applied media, while the dissolution from the control tablets, containing crystalline carvedilol was incomplete and was strongly influenced by the pH of the applied media.


International Journal of Pharmaceutics | 2015

Improvement of mechanical properties of pellet containing tablets by thermal treatment.

Zsombor Csobán; Nikolett Kállai-Szabó; István Sebe; Péter Gordon; István Antal

Batches of partially spray-dried lactose tablets with three different initial tensile strength (∼20N, ∼35N, ∼50N) were made. Changes along a 24h long thermal treatment at 100°C in tensile strength, friability, individual mass, water content, disintegration time, average free volume and wetting properties were evaluated. Caffeine containing gastroresistant pellets were gained by drug layering and filmcoating of inert microcrystalline cellulose pellet cores in fluid bed equipment. Shape, size, mechanical properties, drug content and dissolution profile of the coated pellets were determined. Batches of pellet containing tablets with three different pellet-filler ratios were compressed where partially spray-dried lactose was used as a filler-binder material.Characteristics of pellet containing tablets were evaluated before and after a 24h long thermal treatment at 100°C. Results shown that the poor initial mechanical properties (friability, tensile strength) were improved by thermal exposure while there were no remarkable alterations in drug release profiles.


Drug Development and Industrial Pharmacy | 2015

Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.

István Sebe; Krisztián Norbert Kovács; Enikő Szabadi; Romána Zelkó

Abstract The application of high-speed rotary spinning can offer a useful mean for either preparation of fibrous intermediate for conventional dosage forms or drug delivery systems. Polyvinylpyrrolidone (PVP) and poly(vinylpyrrolidone-vinylacetate) (PVP VA) micro- and nanofibers of different polymer concentrations and solvent ratios were prepared with a high-speed rotary spinning technique. In order to study the influence of parameters that enable successful fiber production from polymeric viscous solutions, a complex micro- and macrostructural screening method was implemented. The obtained fiber mats were subjected to detailed morphological analysis using scanning electron microscope (SEM), and rheological measurements while the microstructural changes of fiber samples, based on the free volume changes, was analyzed by positron annihilation lifetime spectroscopy (PALS) and compared with their mechanical characteristics. The plasticizing effect of water tracked by ortho-positronium lifetime changes in relation to the mechanical properties of fibers. A concentration range of polyvinylpyrrolidone solutions was defined for the preparation of fibers of optimum fiber morphology and mechanical properties. The method enabled fiber formulation of advantageous functionality-related properties for further formulation of solid dosage forms.


International Journal of Pharmaceutics | 2017

In vitro and in silico characterization of fibrous scaffolds comprising alternate colistin sulfate-loaded and heat-treated polyvinyl alcohol nanofibrous sheets

István Sebe; Eszter Ostorházi; Zsolt Bodai; Zsuzsanna Eke; József Szakács; Norbert Krisztián Kovács; Romána Zelkó

A multilayer mat for dispensing colistin sulfate through a body surface was prepared by electrospinning. The fabricated system comprised various polyvinyl alcohol fibrous layers prepared with or without the active ingredient. One of the electrospun layers contained water-soluble colistin sulfate and the other was prepared from the same polymer type and composition without the active drug and was finally heat-treated. The heat treatment modified the supramolecular structure and conferred the polymer nanofibre with the rate-controlling function. The microstructure of different layers was tracked by positron annihilation lifetime spectroscopy, and detailed morphological analysis of the fibre mats was performed using a scanning electron microscope. The drug-release profiles of various layer arrangements were studied in relation to their antimicrobial activity. The finite element method was applied to overcome the challenge of diffusion-controlled drug release from multilayer polymer scaffolds. The finite element method was first verified using analytical solutions for a simple arrangement (one drug-loaded swellable fibre and one rate-controlling nonswellable fibre) under perfect sink conditions and in a well-stirred finite volume. The effect of alternate layer arrangements on the drug-release profiles was also investigated to plan for controlled topical drug release from fibrous scaffolds. This design is expected to aid in increasing local effectiveness, thus reducing the systemic loading and the consequent side effects of colistin.

Collaboration


Dive into the István Sebe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krisztián Norbert Kovács

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zsolt Bodai

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Zsuzsanna Eke

Eötvös Loránd University

View shared research outputs
Researchain Logo
Decentralizing Knowledge