István Szapudi
University of Hawaii
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by István Szapudi.
The Astrophysical Journal | 2005
Daniel J. Eisenstein; Idit Zehavi; David W. Hogg; Roman Scoccimarro; Michael R. Blanton; Robert C. Nichol; Ryan Scranton; Hee-Jong Seo; Max Tegmark; Zheng Zheng; Scott F. Anderson; James Annis; Neta A. Bahcall; J. Brinkmann; Scott Burles; Francisco J. Castander; A. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; Joshua A. Frieman; Karl Glazebrook; James E. Gunn; Johnn Hendry; Gregory S. Hennessy; Zeljko Ivezic; Stephen M. Kent; Gillian R. Knapp; Huan Lin; Yeong Shang Loh
We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h −3 Gpc 3 over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h −1 Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density mh 2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find m = 0.273 ±0.025+0.123(1+ w0)+0.137K. Including the CMB acoustic scale, we find that the spatial curvature is K = −0.010 ± 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties. Subject headings: cosmology: observations — large-scale structure of the universe — distance scale — cosmological parameters — cosmic microwave background — galaxies: elliptical and lenticular, cD
The Astrophysical Journal | 2004
Max Tegmark; Michael R. Blanton; Michael A. Strauss; Fiona Hoyle; David J. Schlegel; Roman Scoccimarro; Michael S. Vogeley; David H. Weinberg; Idit Zehavi; Andreas A. Berlind; Tamas Budavari; A. Connolly; Daniel J. Eisenstein; Douglas P. Finkbeiner; Joshua A. Frieman; James E. Gunn; A. Hamilton; Lam Hui; Bhuvnesh Jain; David E. Johnston; S. Kent; Huan Lin; Reiko Nakajima; Robert C. Nichol; Jeremiah P. Ostriker; Adrian Pope; Ryan Scranton; Uros Seljak; Ravi K. Sheth; Albert Stebbins
We measure the large-scale real-space power spectrum P(k) using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 square degrees with mean redshift z~0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h/Mpc < k < 0.3h/Mpc. We pay particular attention to modeling, quantifying and correcting for potential systematic errors, nonlinear redshift distortions and the artificial red-tilt caused by luminosity-dependent bias. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k<0.1h/Mpc, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the WMAP satellite. As a simple characterization of the data, our measurements are well fit by a flat scale-invariant adiabatic cosmological model with h Omega_m =0.201+/- 0.017 and L* galaxy sigma_8=0.89 +/- 0.02 when fixing the baryon fraction Omega_b/Omega_m=0.17 and the Hubble parameter h=0.72; cosmological interpretation is given in a companion paper.We measure the large-scale real-space power spectrum P(k) by using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h Mpc-1 < k < 0.3 h Mpc-1. We pay particular attention to modeling, quantifying, and correcting for potential systematic errors, nonlinear redshift distortions, and the artificial red-tilt caused by luminosity-dependent bias. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k < 0.1 h Mpc-1, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the Wilkinson Microwave Anisotropy Probe satellite. The power spectrum is not well-characterized by a single power law but unambiguously shows curvature. As a simple characterization of the data, our measurements are well fitted by a flat scale-invariant adiabatic cosmological model with h Ωm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L* galaxies, when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological interpretation is given in a companion paper.
Physical Review D | 2006
Max Tegmark; Daniel J. Eisenstein; Michael A. Strauss; David H. Weinberg; Michael R. Blanton; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; A. Hamilton; Gillian R. Knapp; Robert C. Nichol; Jeremiah P. Ostriker; Nikhil Padmanabhan; Will J. Percival; David J. Schlegel; Donald P. Schneider; Roman Scoccimarro; Uros Seljak; Hee-Jong Seo; M. E. C. Swanson; Alexander S. Szalay; Michael S. Vogeley; Jaiyul Yoo; Idit Zehavi; Kevork N. Abazajian; Scott F. Anderson; James Annis; Neta A. Bahcall; Bruce A. Bassett; Andreas A. Berlind
We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.
The Astrophysical Journal | 2005
Idit Zehavi; Zheng Zheng; David H. Weinberg; Joshua A. Frieman; Andreas A. Berlind; Michael R. Blanton; Roman Scoccimarro; Ravi K. Sheth; Michael A. Strauss; Issha Kayo; Yasushi Suto; Masataka Fukugita; Osamu Nakamura; Neta A. Bahcall; J. Brinkmann; James E. Gunn; Greg Hennessy; Željko Ivezić; Gillian R. Knapp; Jon Loveday; Avery Meiksin; David J. Schlegel; Donald P. Schneider; István Szapudi; Max Tegmark; Michael S. Vogeley; Donald G. York
Westudytheluminosityandcolordependenceofthegalaxytwo-pointcorrelationfunctionintheSloanDigitalSky Survey, starting from a sample of � 200,000 galaxies over 2500 deg 2 . We concentrate our analysis on volume-limited subsamples of specified luminosity ranges, for which we measure the projected correlation function wp(rp), which is directly related to the real-space correlation function � (r). The amplitude of wp(rp) rises continuously with luminosity from Mr �� 17: 5t oMr �� 22:5, with the most rapid increase occurring above the characteristic luminosity L� (Mr �� 20:5). Over the scales 0:1 h � 1 Mpc � 22 can be approximated, imperfectly, by power-law three-dimensional correlation functions � (r) ¼ (r/r0) � � with � � 1:8 and r0(L� ) � 5:0 h � 1 Mpc. The brightest subsample, � 23 < Mr < � 22, has a significantly steeper � (r). When we divide samples by color, redder galaxies exhibit a higher amplitude and steeper correlation function at all luminosities. The correlation amplitude of blue galaxies increases continuously with luminosity, but the luminosity dependence for red galaxies is less regular, with bright red galaxies exhibiting the strongest clustering at large scales and faint red galaxies exhibiting the strongest clustering at small scales. We interpret these results using halo occupation distribution (HOD) models assuming concordance cosmological parameters. For most samples, an HOD model with two adjustable parameters fits the wp(rp) data better than a power law, explaining inflections at rp � 1 3 h � 1 Mpc as the transition between the one-halo and two-halo regimes of � (r). The implied minimum mass for a halo hosting a central galaxy more luminous than L grows steadily, with Mmin / L at low luminosities and a steeper dependence above L� . The mass at which a halo has, on average, one satellite galaxy brighter than L is M1 � 23Mmin(L), at all luminosities. These results imply a conditional luminosity function (at fixed halo mass) in which central galaxies lie far above a Schechter function extrapolation of the satellite population. The HOD model fits nicely explain the color dependence of wp(rp) and the cross correlation between red and blue galaxies. For galaxies with Mr < � 21, halos slightly above Mmin have blue central galaxies, while more massive halos have red central galaxies and predominantly red satellite populations. The fraction of blue central galaxies increases steadily with decreasing luminosity and host halo mass. The strong clustering offaint red galaxies follows from the fact that nearly all of them are satellite systems in high-mass halos. The HOD fitting results are in good qualitative agreement with the predictions of numerical and semianalytic models of galaxy formation. Subject headingg cosmology: observations — cosmology: theory — galaxies: distances and redshifts — galaxies: halos — galaxies: statistics — large-scale structure of universe
The Astrophysical Journal | 2002
Idit Zehavi; Michael R. Blanton; Joshua A. Frieman; David H. Weinberg; Hounjun J. Mo; Michael A. Strauss; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Julianne J. Dalcanton; Scott Dodelson; Mamoru Doi; Daniel J. Eisenstein; Michael L. Evans; Douglas P. Finkbeiner; Scott D. Friedman; Masataka Fukugita; James E. Gunn; Greg Hennessy; Robert B. Hindsley; Željko Ivezić; Stephen B. H. Kent
We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700 km s-1 ≤ cz ≤ 39,000 km s-1, distributed in several long but narrow (25-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, fingers-of-God distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r) = (r/6.1 ± 0.2 h-1 Mpc)-1.75±0.03, for 0.1 h-1 Mpc ≤ r ≤ 16 h-1 Mpc. The galaxy pairwise velocity dispersion is σ12 ≈ 600 ± 100 km s-1 for projected separations 0.15 h-1 Mpc ≤ rp ≤ 5 h-1 Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r 10 h-1 Mpc: subsamples with absolute magnitude ranges centered on M* - 1.5, M*, and M* + 1.5 have real-space correlation functions that are parallel power laws of slope ≈-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.
The Astrophysical Journal | 2002
Ryan Scranton; David E. Johnston; Scott Dodelson; Joshua A. Frieman; A. J. Connolly; Daniel J. Eisenstein; James E. Gunn; Lam Hui; Bhuvnesh Jain; Stephen B. H. Kent; Jon Loveday; Vijay K. Narayanan; Robert C. Nichol; Liam O'Connell; Roman Scoccimarro; Ravi K. Sheth; Albert Stebbins; Michael A. Strauss; Alexander S. Szalay; István Szapudi; Max Tegmark; Michael S. Vogeley; Idit Zehavi; James Annis; Neta A. Bahcall; J. Brinkman; István Csabai; Robert B. Hindsley; Zeljko Ivezic; Rita S. J. Kim
The angular distribution of galaxies encodes a wealth of information about large-scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order of 108 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe of 25 × 90° from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0003 to 15°. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog—with the mask accounting for regions of poor seeing, reddening, bright stars, etc.—is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.
The Astrophysical Journal | 2008
Benjamin R. Granett; István Szapudi
We measure hot and cold spots on the microwave background associated with supercluster and supervoid structures identified in the Sloan Digital Sky Survey luminous red galaxy catalog. The structures give a compelling visual imprint, with a mean temperature deviation of 9.6 ± 2.2 μK, i.e., above 4 σ. We interpret this as a detection of the late-time integrated Sachs-Wolfe (ISW) effect, in which cosmic acceleration from dark energy causes gravitational potentials to decay, heating or cooling photons passing through density crests or troughs. In a flat universe, the linear ISW effect is a direct signal of dark energy.
arXiv: Astrophysics | 2001
Ryan Scranton; David E. Johnston; Scott Dodelson; Joshua A. Frieman; A. J. Connolly; Daniel J. Eisenstein; James E. Gunn; Lam Hui; Bhuvnesh Jain; Stephen B. H. Kent; Jon Loveday; Vijay K. Narayanan; Robert C. Nichol; Liam O'Connell; Roman Scoccimarro; Ravi K. Sheth; Albert Stebbins; Michael A. Strauss; Alexander S. Szalay; István Szapudi; Max Tegmark; Michael S. Vogeley; Idit Zehavi
The angular distribution of galaxies encodes a wealth of information about large-scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order of 108 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe of 25 × 90° from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0003 to 15°. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog—with the mask accounting for regions of poor seeing, reddening, bright stars, etc.—is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.
The Astrophysical Journal | 2003
Tamas Budavari; A. Connolly; Alexander S. Szalay; István Szapudi; István Csabai; Ryan Scranton; Neta A. Bahcall; J. Brinkmann; Daniel J. Eisenstein; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; David E. Johnston; Stephen M. Kent; Jon Loveday; Robert H. Lupton; Max Tegmark; Aniruddha R. Thakar; Brian Yanny; Donald G. York; Idit Zehavi
Understanding the clustering of galaxies has long been a goal of modern observational cosmology. Redshift surveys have been used to measure the correlation length as a function of luminosity and color. However, when subdividing the catalogs into multiple subsets, the errors increase rapidly. Angular clustering in magnitude-limited photometric surveys has the advantage of much larger catalogs but suffers from a dilution of the clustering signal because of the broad radial distribution of the sample. Also, up to now it has not been possible to select uniform subsamples based on physical parameters, such as luminosity and rest-frame color. Utilizing our photometric redshift technique, a volume-limited sample (0:1 < z < 0:3) containing more than 2 million galaxies is constructed from the Sloan Digital Sky Survey galaxy catalog. In the largest such analysis to date, we study the angular clustering as a function of luminosity and spectral type. Using Limber’s equation, we calculate the clustering length for the full data set as r0 ¼ 5:77 � 0:10 h � 1 Mpc. We find that r0 increases with luminosity by a factor of 1.6 over the sampled luminosity range, in agreement with previous redshift surveys. We also find that both the clustering length and the slope of the correlation function depend on the galaxy type. In particular, by splitting the galaxies in four groups by their rest-frame type, we find a bimodal behavior in their clustering properties. Galaxies with spectral types similar to elliptical galaxies have a correlation length of 6:59 � 0:17 h � 1 Mpc and a slope of the angular correlation function of 0:96 � 0:05, while blue galaxies have a clustering length of 4:51 � 0:19 h � 1 Mpc and a slope of 0:68 � 0:09. The two intermediate color groups behave like their more extreme ‘‘ siblings ’’ rather than showing a gradual transition in slope. We discuss these correlations in the context of current cosmological models for structure formation. Subject headings: cosmology: observations — galaxies: clusters: general — galaxies: distances and redshifts — galaxies: evolution — galaxies: photometry — large-scale structure of universe
Monthly Notices of the Royal Astronomical Society | 2004
Gayoung Chon; A. Challinor; S. Prunet; E. Hivon; István Szapudi
We present a fast method for estimating the cosmic microwave background polarization power spectra using unbiased estimates of heuristically weighted correlation functions. This extends the O(N 3/2 pix) method of Szapudi et al. to polarized data. If the sky coverage allows the correlation functions to be estimated over the full range of angular separations, they can be inverted directly with integral transforms and clean separation of the electric (E) and magnetic (B) modes of polarization is obtained exactly in the mean. We assess the level of E-B mixing that arises from apodized integral transforms when the correlation function can only be estimated for a subset of angular scales, and show that it is significant for small-area observations. We introduce new estimators to deal with this case on the spherical sky that preserve E-B separation; their construction requires an additional integration of the correlation functions but the computational cost is negligible. We illustrate our methods with application to a large-area survey with parameters similar to Planck, and the small-area Background Imaging of Cosmic Extragalactic Polarization experiment. In both cases we show that the errors on the recovered power spectra are close to theoretical expectations.