Itai Benhar
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Itai Benhar.
Biotechnology Advances | 2001
Itai Benhar
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.
Journal of Neuroimmunology | 2000
Dan Frenkel; Beka Solomon; Itai Benhar
A single-chain antibody was constructed from variable regions of heavy and light genes of the parental anti-beta-amyloid peptide IgM 508 antibody. This antibody exhibits anti-aggregating properties, leading to disaggregation of Alzheimer beta-amyloid (betaA) fibrils and prevents its toxic effect on cultured PC-12 cells. Sequencing of the small antibody, namely 508 (Fv), revealed that the V(L) domain contained a cysteine residue in the complementary determining region (CDR)3 (residue 96) which affects its solubility and stability. The cysteine codon was replaced using SOE PCR, and one of the mutants obtained, namely 508F(Fv) (containing phenylalanine instead of cysteine), showed an increased storage stability and higher affinity compared to the wild type. Antibody 508F(Fv) prevents the neurotoxicity of betaA (90% cell viability) and disrupts the fibril structure of beta-amyloid (62% decrease in ThT fluorescence). The ability of antibody 508F(Fv) to dissolve already-formed betaA fibrils makes it a good candidate for intracellular expression and modulation of APP processing as the first step towards the production of therapeutic protection molecules for Alzheimers disease treatment.
Journal of Molecular Biology | 2002
Yariv Mazor; Sharon Gilead; Itai Benhar; Ehud Gazit
The islet amyloid polypeptide (hIAPP) is a 37 amino acid residue polypeptide that was found to accumulate as amyloid fibrils in the pancreas of individuals with type II diabetes. Previous studies identified various fragments of hIAPP that can form amyloid fibrils in vitro (e.g. hIAPP(8-20), hIAPP(23-27), and hIAPP(30-37)). However, no comparative and systematic information was available on the role of these structural domains (or others) in the process of molecular recognition that mediates fibrillization, in the context of the full-length polypeptide. To systematically map and compare potential recognition domains, we studied the ability of hIAPP to interact with an array of 28 membrane-spotted overlapping peptides that span the entire sequence of hIAPP (i.e. hIAPP(1-10), hIAPP(2-11...), hIAPP(28-37)). Our study clearly identified a major domain of molecular recognition within hIAPP, as the polypeptide was found to bind with high affinity to a defined linear group of peptides ranging from hIAPP(7-16) to hIAPP(12-21). The maximal binding of the full-length polypeptide was to the hIAPP(11-20) peptide fragment (with the sequence RLANFLVHSS). In order to define the minimal fragment, within this apparent recognition motif, that is capable of self-association and thus may serve as the core molecular recognition motif, we examined the ability of truncated analogs of the recognition sequence to self-assemble into amyloid fibrils. The shortest active fragments capable of self-assembly were found to be the pentapeptides FLVHS and NFLVH. The apparent role of this motif in the process of hIAPP self-assembly is consistent with the profile of the hIAAP-binding distribution to the peptide array. The identification of such short recognition motifs is extremely useful in the attempts to develop means to block amyloid fibril formation by hIAPP. It is worth mentioning that this is only the second time in which peptides as short as a pentapeptide were shown to form amyloid fibrils (the other pentapeptide is FGAIL).
Neuropsychopharmacology | 2012
Lior Brimberg; Itai Benhar; Adita Mascaro-Blanco; Kathy Alvarez; Dafna Lotan; Christine Winter; Allon E Moses; Finn E Somnier; James F. Leckman; Susan E. Swedo; Madeleine W. Cunningham; Daphna Joel
Group A streptococcal (GAS) infections and autoimmunity are associated with the onset of a spectrum of neuropsychiatric disorders in children, with the prototypical disorder being Sydenham chorea (SC). Our aim was to develop an animal model that resembled the behavioral, pharmacological, and immunological abnormalities of SC and other streptococcal-related neuropsychiatric disorders. Male Lewis rats exposed to GAS antigen exhibited motor symptoms (impaired food manipulation and beam walking) and compulsive behavior (increased induced-grooming). These symptoms were alleviated by the D2 blocker haloperidol and the selective serotonin reuptake inhibitor paroxetine, respectively, drugs that are used to treat motor symptoms and compulsions in streptococcal-related neuropsychiatric disorders. Streptococcal exposure resulted in antibody deposition in the striatum, thalamus, and frontal cortex, and concomitant alterations in dopamine and glutamate levels in cortex and basal ganglia, consistent with the known pathophysiology of SC and related neuropsychiatric disorders. Autoantibodies (IgG) of GAS rats reacted with tubulin and caused elevated calcium/calmodulin-dependent protein kinase II signaling in SK-N-SH neuronal cells, as previously found with sera from SC and related neuropsychiatric disorders. Our new animal model translates directly to human disease and led us to discover autoantibodies targeted against dopamine D1 and D2 receptors in the rat model as well as in SC and other streptococcal-related neuropsychiatric disorders.
BMC Biotechnology | 2008
Hagit Bar; Iftach Yacoby; Itai Benhar
BackgroundSystemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs.ResultsWe present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs.ConclusionThe results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.
Gut | 2016
Shomron Ben-Horin; Miri Yavzori; Itai Benhar; Ella Fudim; Orit Picard; Bella Ungar; SooYoung Lee; Sunghwan Kim; Rami Eliakim; Yehuda Chowers
Objective The cross-immunogenicity of the recently approved infliximab-biosimilar Remsima (CT-P13) with the originator drug Remicade is still unknown. Design Sera of patients with IBD with or without measurable anti-Remicade antibodies to infliximab (ATI) were tested for their cross-reactivity to two batches of Remsima. Experiments were repeated after deglycosylation of Remicade/Remsima, IgG purification, excipients’ dialysis and monomer purification by size exclusion chromatography. Anti-Remicade antibodies were tested for their functional inhibition of TNF-α binding by Remsima/Remicade by competition assay. Cross-reactivity of anti-adalimumab antibodies with Remicade/Remsima was also investigated. Results 125 patients’ and controls’ sera were tested (median age 31 years, IQR 24.5–39.5). All 56 anti-Remicade ATI-negative controls (14 healthy individuals, 42 patients with IBD) were also negative for anti-Remsima ATI. All 69 positive anti-Remicade IBD sera were cross-reactive with Remsima. ATI titres against Remicade or Remsima were strongly correlated (r values between 0.92 and 0.99, p<0.001 for all experiments, Spearmans correlation test). The background ELISA signal for Remsima was slightly higher compared with Remicade in negative controls (1.25±0.6 µg/mL vs 0.76±0.5 µg/mL, respectively, p<0.001), and persisted after deglycosylation, dialysis or protein size filtration, but abolished by IgG purification and significantly diminished by monomer purification. Anti-Remicade ATIs of patients with IBD (n=10) exerted similar functional inhibition on Remsima or Remicade TNF-α binding capacity (p=NS for all inhibition curve points). Antibodies-to-adalimumab in adalimumab-treated patients with IBD (n=7) did not cross-react with either Remicade or Remsima. Conclusions Anti-Remicade antibodies in patients with IBD recognise and functionally inhibit Remsima to a similar degree, suggesting similar immunogenicity and shared immunodominant epitopes on these two infliximab agents. In contrast, anti-adalimumab antibodies do not cross-react with Remsima or Remicade.
Antimicrobial Agents and Chemotherapy | 2006
Iftach Yacoby; Marina Shamis; Hagit Bar; Doron Shabat; Itai Benhar
ABSTRACT Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance.
Antimicrobial Agents and Chemotherapy | 2007
Iftach Yacoby; Hagit Bar; Itai Benhar
ABSTRACT While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug.
Toxins | 2010
Assaf Shapira; Itai Benhar
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Journal of Viral Hepatitis | 2001
Romy Zemel; S. Gerechet; H. Greif; L. Bachmatove; Y. Birk; Avi Golan-Goldhirsh; M. Kunin; Yevgeny Berdichevsky; Itai Benhar; Ran Tur-Kaspa
Persistent infection with hepatitis C virus (HCV) may lead to hepatocellular carcinoma (HCC). It has been suggested that HCV‐encoded proteins are directly involved in the tumorigenic process. The HCV nonstructural protein NS3 has been identified as a virus‐encoded serine protease. To study whether HCV NS3 has oncogenic activity, nontumorigenic rat fibroblast (RF) cells were stably transfected with an expression vector containing cDNA for the NS3 serine protease (nucleotides 3356–4080). The NS3 serine protease activity was determined in the transfected cells. The transfected cells grew rapidly and proliferated serum independently, lost contact inhibition, grew anchorage independently in soft agar and induced significant tumour formation in nude mice. Cells transfected with an expression vector containing a mutated NS3 serine protease (serine 139 to alanine at the catalytic site) showed no transforming abilities; their growth was dependent on serum and they did not grow anchorage independently in soft agar. Moreover, cells transfected with the NS3 serine protease and treated with the chymotrypsin inhibitors TPCK and PMSF (a serine protease inhibitor) lost their transforming feature. These results suggest that the NS3 serine protease of HCV is involved in cell transformation and that the ability to transform requires an active enzyme.