Italo R.R. Martins
Federal University of Paraíba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Italo R.R. Martins.
Molecules | 2014
Cibério Landim Macêdo; Luiz Henrique César Vasconcelos; Ana de C. Correia; Italo R.R. Martins; Daysianne de Lira; Bárbara de O. Santos; Fabiana de Andrade Cavalcante; Bagnólia da Silva
In this study, we investigated the relaxant action of galetin 3,6-dimethyl ether (FGAL) on rat aorta. The flavonoid relaxed both PMA‑ and phenylephrine (Phe)-induced contractions (pD2 = 5.36 ± 0.11 and 4.17 ± 0.10, respectively), suggesting the involvement of PKC and Phe pathways or α1 adrenergic receptor blockade. FGAL inhibited and rightward shifted Phe-induced cumulative concentration‑response curves, indicating a noncompetitive antagonism of α1 adrenergic receptors. The flavonoid was more potent in relaxing 30 mM KCl- than 80 mM KCl-induced contractions (pD2 = 5.50 ± 0.22 and 4.37 ± 0.12). The vasorelaxant potency of FGAL on Phe-induced contraction was reduced in the presence of 10 mM TEA+. Furthermore, in the presence of apamin, glibenclamide, BaCl2 or 4-AP, FGAL-induced relaxation was attenuated, indicating the participation of small conductance calcium-activated K+ channels (SKCa), ATP-sensitive K+ channels (KATP), inward rectifier K+ channels (Kir) and voltage-dependent K+ channels (KV), respectively. FGAL inhibited and rightward shifted CaCl2-induced cumulative concentration-response curves in both depolarizing medium (high K+) and in the presence of verapamil and phenylephrine, suggesting inhibition of Ca2+ influx through voltage-gated calcium channels (CaV) and receptor operated channels (ROCs), respectively. Likewise, FGAL inhibited Phe-induced contractions in Ca2+-free medium, indicating inhibition of Ca2+ release from the sarcoplasmic reticulum (SR). FGAL potentiated the relaxant effect of aminophylline and sildenafil but not milrinone, suggesting the involvement of phosphodiesterase V (PDE V). Thus, the FGAL vasorelaxant mechanism involves noncompetitive antagonism of α1 adrenergic receptors, the non-selective opening of K+ channels, inhibition of Ca2+ influx through CaV or ROCs and the inhibition of intracellular Ca2+ release. Additionally, there is the involvement of cyclic nucleotide pathway, particularly through PDE V inhibition.
Natural Product Research | 2015
Ana Carolina de Carvalho Correia; Tamyris F. Ferreira; Italo R.R. Martins; Cibério Landim Macêdo; Fabio de S. Monteiro; Vicente Carlos de Oliveira Costa; Josean Fechine Tavares; Marcelo Sobral da Silva; Edgar J. Paredes-Gamero; Marcus V. Buri; Vera L.S. Rigoni; Viviane L. A. Nouailhetas; Bagnólia Araújo da Silva
Xylopia langsdorfiana A. St.-Hil. &Tul. (Annonaceae) is popularly known in the northeast of Brazil as ‘pimenteira da terra’, and an essential oil (XL-OE) was extracted from its leaves. Since Xylopia species are cited in folk medicine and diterpenes from X. langsdorfiana have spasmolytic activity, this study aimed to investigate a possible spasmolytic action of XL-OE on smooth muscle models. XL-OE (243 and 729 μg/mL) showed low pharmacologic efficacy on guinea pig trachea and rat aorta and uterus. However, in guinea pig ileum, XL-OE (27–729 μg/mL) inhibited carbachol or histamine-induced phasic contractions (1 μM) in a significant and concentration-dependent manner. In addition, XL-OE (81 μg/mL) reduced fluorescence intensity in ileal myocytes stimulated by histamine, indicating a decrease in cytosolic calcium concentration, which could explain the spasmolytic activity. Thus, XL-OE proved to be a promising natural product to be used in gastrointestinal diseases acting by modulating the cytosolic calcium concentration.
Natural Product Research | 2012
Rosimeire F. Santos; Italo R.R. Martins; Fabio de S. Monteiro; Rafael de Almeida Travassos; Daniele Idalino Janebro; Josean Fechine Tavares; Marcelo Sobral da Silva; Bagnólia Araújo da Silva
We aimed to investigate the possible spasmolytic activity of ent-7α-acetoxytrachyloban-18-oic acid (1) and ent-7α-hydroxytrachyloban-18-oic acid (2) on smooth muscle models. In male rat aorta and rat uterus, both diterpenes were unable to trigger spasmolytic action. However, 2 relaxed guinea-pig trachea: Compounds 1 and 2 antagonised, significantly and concentration-dependently, carbachol- and histamine-induced phasic contractions in guinea-pig ileum. Moreover, they induced a significant and concentration-dependent relaxation in pre-contracted (KCl, carbachol or histamine) guinea-pig ileum, with 2 being 15 times more potent than 1 in histamine-contracted ileum. These dissimilar results may be due to chemical differences between them. Thus, we demonstrated that 1 and 2 seem to be promising spasmolytic agents, although further studies are required to elucidate the spasmolytic action mechanism.
European Journal of Pharmacology | 2012
Rosimeire F. dos Santos; Italo R.R. Martins; Rafael de Almeida Travassos; Josean Fechine Tavares; Marcelo Sobral da Silva; Edgar J. Paredes-Gamero; Alice T. Ferreira; Viviane L. A. Nouailhetas; Jeannine Aboulafia; Vera L.S. Rigoni; Bagnólia Araújo da Silva
In this study we investigated the mechanism underlying the spasmolytic action of ent-7α-acetoxytrachyloban-18-oic acid (trachylobane-360) and ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318), diterpenes obtained from Xylopia langsdorfiana, on guinea pig ileum. Both compounds inhibited histamine-induced cumulative contractions (slope=3.5±0.9 and 4.4±0.7) that suggests a noncompetitive antagonism to histaminergic receptors. CaCl(2)-induced contractions were nonparallelly and concentration-dependently reduced by both diterpenes, indicating blockade of calcium influx through voltage-dependent calcium channels (Ca(v)). The Ca(v) participation was confirmed since both trachylobanes equipotently relaxed ileum pre-contracted with S-(-)-Bay K8644 (EC(50)=3.5±0.7×10-(5) and 1.1±0.2×10-(5)M) and KCl (EC(50)=5.5±0.3×10-(5) and 1.4±0.2×10-(5)M). K(+) channels participation was confirmed since diterpene-induced relaxation curves were significantly shifted to right in the presence of 5mM tetraethylammonium (TEA(+)) (EC(50)=0.5±0.04×10-(4) and 2.0±0.5×10-(5)M). ATP-sensitive K(+) channel (K(ATP)), voltage activated K(+) channels (K(V)), small conductance calcium-activated K(+) channels (SK(Ca)) or big conductance calcium-activated K(+) channels (BK(Ca)) did not seem to participate of trachylobane-360 spasmolytic action. However trachylobane-318 modulated positively K(ATP), K(V) and SK(Ca) (EC(50)=1.1±0.3×10-(5), 0.7±0.2×10-(5) and 0.7±0.2×10-(5)M), but not BK(Ca). A fluorescence analysis technique confirmed the decrease of cytosolic calcium concentration ([Ca(2+)](c)) induced by both trachylobanes in ileal myocytes. In conclusion, trachylobane-360 and trachylobane-318 induced spasmolytic activity by K(+) channel positive modulation and Ca(2+) channel blockade, which results in [Ca(2+)](c) reduction at cellular level leading to smooth muscle relaxation.
Zeitschrift für Naturforschung C | 2014
Cibério Landim Macêdo; Luiz Henrique César Vasconcelos; Ana Carolina de Carvalho Correia; Italo R.R. Martins; Daysianne Pereira de Lira; Bárbara Viviana de Oliveira Santos; Bagnólia Araújo da Silva
Abstract Galetin 3,6-dimethyl ether (FGAL), a flavonoid from the aerial parts of Piptadenia stipulacea (Benth.) Ducke, was found to exert a relaxant effect on carbachol (CCh)-pre-contracted guinea-pig trachea. Based on cumulative concentration-response curves to CCh, FGAL antagonized muscarinic receptors pseudo-irreversibly and noncompetitively, since it inhibited and shifted these curves towards higher concentrations in a nonparallel manner. In addition, FGAL was more potent in relaxing contractions induced by 18 mM as compared to 60 mM KCl (pD2 = 5:50 ±0:36 and 4.80 ±0.07, respectively), indicating the participation of K+ channels. In the presence of 10 mM tetraethylammonium (TEA+) chloride, a nonselective K+ channel blocker, the relaxant potency of FGAL was reduced (from pD2 = 5:12 ±0:07 to 4.87 ±0.02). Among several selective blockers of K+ channel subtypes, only apamin, an SKCa (small-conductance Ca2+-activated K+ channels) blocker, attenuated the relaxant potency of FGAL (pD2 = 4:85±0:06), suggesting SKCa activation. FGAL was equipotent in relaxing trachea contracted by 60 mM KCl (pD2 =4:80 ±0:07) or 10-6 M CCh (pD2 = 5:02 ±0:07), suggesting CaV (voltage-gated calcium channel), but not ROCs (receptor-operated calcium channels) participation. Furthermore, aminophylline-induced relaxation (pD2 = 4:12 ±0:06) was potentiated around 4-fold (pD2 = 4:80 ±0:44) in the presence of FGAL. Moreover, forskolininduced relaxation (pD2 = 6:51 ±0:06) was potentiated around 2.5-fold (pD2 = 6:90 ±0:05) by FGAL. Conversely, sodium nitroprusside-induced relaxation was unaffected, indicating that the AC/cAMP/PKA pathway, but not the NO pathway, may be modulated by the flavonoid. These results suggest that, in guinea-pig trachea, FGAL induces relaxation by pseudo-irreversible noncompetitive antagonism on muscarinic receptors, modulation of K+ and Ca2+ channels, as well as activation of the AC/cAMP/PKA pathway.
Zeitschrift für Naturforschung C | 2010
Fabiana de Andrade Cavalcante; Fabio de S. Monteiro; Italo R.R. Martins; Ticiano P. Barbosa; Celso A. Camara; Ângelo C. Pinto; Maria D. Vargas; Bagnólia Araújo da Silva
The present study was designed to further evaluate a possible spasmolytic activity of synthetic lapachol derivatives, norlapachol, α-norlapachone, β-norlapachone and hydro-hydroxy- norlapachol (HH-norlapachol), on guinea-pig ileum. In guinea-pig ileum, except for norlapachol, all naphthoquinones inhibited the phasic contractions induced by carbachol or histamine. Even when the ileum was pre-contracted with KCl, carbachol or histamine, all naphthoquinones induced relaxation, suggesting that these naphthoquinones could be acting on the voltage-gated calcium channels (CaV). As the tonic component this contraction is maintained mainly by the opening of the CaV, we hypothesized that these naphthoquinones might be acting on these channels. This hypothesis was confirmed by the observation that norlapachol (pD’2 = 4.99), α-norlapachone (pD’2 = 4.49), β-norlapachone (pD’2 = 6.33), and HH-norlapachol (pD’2 = 4.53) antagonized the contractions induced by CaCl2 in depolarizing medium nominally without Ca2+. As β-norlapachone was the most potent we decided to continue the study of its action mechanism. The fact that this naphthoquinone has inhibited the tonic contractions induced by S-(-)-Bay K8644 [EC50 = (1.6 ± 0.30) · 10-5 M] suggests that the Ca2+ channel involved belongs to the type L (CaV1.2). In addition, in the functional level, the spasmolytic effect of β-norlapachone does not involve participation of free radicals, since its curve of relaxation was unchanged in the presence of glutathione, an antioxidant agent.
Journal of Smooth Muscle Research | 2015
Aline de Freitas Brito; Alexandre Sérgio Silva; Iara L. L. de Souza; Joedna C. Pereira; Italo R.R. Martins; Bagnólia Araújo da Silva
Studies that evaluate the mechanisms for increased airway responsiveness are very sparse, although there are reports of exercise-induced bronchospasm. Therefore, we have evaluated the tracheal reactivity and the rate of lipid peroxidation after different intensities of swimming exercise in rats. Thus, male Wistar rats (age 8 weeks; 250–300 g) underwent a forced swimming exercise for 1 h whilst carrying attached loads of 3, 4, 5, 6 and 8% of their body weight (groups G3, G4, G5, G6 and G8, respectively; n=5 each). Immediately after the test, the trachea of each rat was removed and suspended in an organ bath to evaluate contractile and relaxant responses. The rate of lipid peroxidation was estimated by measuring malondialdehyde levels. According to a one-way ANOVA, all trained groups showed a significant decrease in the relaxation induced by aminophylline (10−12–10−1 M) (pD2=3.1, 3.2, 3.3, 3.3 and 3.2, respectively for G3, G4, G5, G6 and G8) compared to the control group (pD2=4.6) and the Emax values of G5, G6, G8 groups were reduced by 94.2, 88.0 and 77.0%, respectively. Additionally, all trained groups showed a significant increase in contraction induced by carbachol (10−9–10−3 M) (pD2=6.0, 6.5, 6.5, 7.2 and 7.3, respectively for G3, G4, G5, G6 and G8) compared to the control group (pD2=5.7). Lipid peroxidation levels of G3, G4 and G5 were similar in both the trachea and lung, however G6 and G8 presented an increased peroxidation in the trachea. In conclusion, a single bout of swimming exercise acutely altered tracheal responsiveness in an intensity-related manner and the elevation in lipid peroxidation indicates a degree of oxidative stress involvement.
Journal of Smooth Muscle Research | 2013
Italo R.R. Martins; Rosimeire F. dos Santos; Ana Carolina de Carvalho Correia; Gislaine Alves de Oliveira; Cibério Landim Macêdo; Fabio de S. Monteiro; Paula F. dos Santos; Fabiana de Andrade Cavalcante; Josean Fechine Tavares; Bagnólia Araújo da Silva
Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana, has previously been shown to relax the guinea-pig trachea in a concentration-dependent manner. In this study we aimed to elucidate the mechanisms underlying this action and so contribute to the discovery of natural products with therapeutic potential. A possible interaction between diterpene and the Ca2+-calmodulin complex was eliminated as chlorpromazine (10-6 M), a calmodulin inhibitor, did not significantly alter the diterpene-induced relaxation (pD2 = 4.38 ± 0.07 and 4.25 ± 0.07; mean ± S.E.M., n=5). Trachylobane-318 showed a higher relaxant potency when the trachea was contracted by 18 mM KCl than it did with 60 mM KCl (pD2 = 4.90 ± 0.25 and 3.88 ± 0.01, n=5), suggesting the possible activation of K+ channels. This was confirmed, as in the presence of 10 mM TEA+ (a non-selective K+ channel blocker), diterpene relaxation potency was significantly reduced (pD2 = 4.38 ± 0.07 to 4.01 ± 0.06, n=5). Furthermore, K+ channel subtypes KATP, KV, SKCa and BKCa seem to be modulated positively by trachylobane-318 (pD2 = 3.91 ± 0.003, 4.00 ± 0.06, 3.45 ± 0.14 and 3.80 ± 0.05, n=5) but not the Kir subtype channel (pD2 = 4.15 ± 0.10, n=5). Cyclic nucleotides were not involved as the relaxation due to aminophylline (pD2 = 4.27 ± 0.09, n=5) was not altered in the presence of 3 × 10-5 M trachylobane-318 (pD2 = 4.46 ± 0.08, n=5). Thus, at a functional level, trachylobane-318 seems to relax the guinea-pig trachea by positive modulation of K+ channels, particularly the KATP, KV, SKCa and BKCa subtypes.
Journal of Ethnopharmacology | 2012
Fabio de S. Monteiro; Ana C.L. Silva; Italo R.R. Martins; Ana Carolina de Carvalho Correia; Ionaldo José Lima Diniz Basílio; Maria de Fátima Agra; Jnanabrata Bhattacharyya; Bagnólia Araújo da Silva
Journal of Smooth Muscle Research | 2011
Cibério Landim Macêdo; Luiz Henrique César Vasconcelos; Ana Carolina de Carvalho Correia; Italo R.R. Martins; Daysianne Pereira de Lira; Bárbara Viviana de Oliveira Santos; Bagnólia Araújo da Silva