Itshak Golan
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Itshak Golan.
Critical Reviews in Clinical Laboratory Sciences | 2002
David Naor; Shlomo Nedvetzki; Itshak Golan; Lora Melnik; Yoram Faitelson
CD44 is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines, and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. All these biological properties are essential to the physiological activities of normal cells, but they are also associated with the pathologic activities of cancer cells. Experiments in animals have shown that targeting of CD44 by antibodies, antisense, and CD44-soluble proteins markedly reduces the malignant activities of various neoplasms, stressing the therapeutic potential of anti-CD44 agents. Furthermore, because alternative splicing and posttranslational modifications generate many different CD44 sequences, including, perhaps, tumor-specific sequences, the production of anti-CD44 tumor-specific agents may be a realistic therapeutic approach. However, in many cancers (renal cancer and non-Hodgkins lymphomas are exceptions), a high level of CD44 expression is not always associated with an unfavorable outcome. On the contrary, in some neoplams CD44 upregulation is associated with a favorable outcome. Even worse, in many cases different research groups analyzing the same neoplastic disease reached contradictory conclusions regarding the correlation between CD44 expression and disease prognosis, possibly due to differences in methodology. These problems must be resolved before applying anti-CD44 therapy to human cancers
Journal of Immunology | 2007
Lora Eshkar Sebban; Denise Ronen; David Levartovsky; Ori Elkayam; Dan Caspi; Suhail Aamar; Howard Amital; Alan Rubinow; Ira Golan; David Naor; Yehiel Zick; Itshak Golan
The synovial fluid (SF) cells of rheumatoid arthritis (RA) patients express a specific CD44 variant designated CD44vRA. Using a cellular model of this autoimmune disease, we show in this study that the mammalian lectin, galectin-8 (gal-8), is a novel high-affinity ligand of CD44vRA. By affinity chromatography, flow cytometry, and surface plasmon resonance, we demonstrate that gal-8 interacts with a high affinity (Kd, 6 × 10−9 M) with CD44vRA. We further demonstrate that SF cells from RA patients express and secrete gal-8, to a concentration of 25–65 nM, well within the concentration of gal-8 required to induce apoptosis of SF cells. We further show that not all gal-8 remains freely soluble in the SF and at least part forms triple complexes with CD44 and fibrinogen that can be detected, after fibrinogen immunoprecipitation, with Abs against fibrinogen, gal-8 and CD44. These triple complexes may therefore increase the inflammatory reaction by sequestering the soluble gal-8, thereby reducing its ability to induce apoptosis in the inflammatory cells. Our findings not only shed light on the receptor-ligand relationships between CD44 and gal-8, but also underline the biological significance of these interactions, which may affect the extent of the autoimmune inflammatory response in the SF of RA patients.
Annals of the New York Academy of Sciences | 2007
David Naor; Shlomo Nedvetzki; Marita Walmsley; Avner Yayon; Eva A. Turley; Ira Golan; Dan Caspi; Lora Eshkar Sebban; Yehiel Zick; Tali Garin; Dimitrios Karussis; Nathalie Assayag-Asherie; Itamar Raz; Lola Weiss; Shimon Slavin; Itshak Golan
Abstract: CD44 is a multistructural and multifunctional glycoprotein, the diversity of which is generated by alternative splicing. In this communication we review some aspects related to CD44 structure and function in experimental autoimmune inflammation, focusing on research performed in our own laboratory. We have found that CD44 targeting by antibody, passively injected into DBA/1 mice with collagen‐induced arthritis (CIA) and NOD mice with type I diabetes or actively generated by CD44 cDNA vaccination of SJL/j mice with autoimmune encephalomyelitis, markedly reduced the pathological manifestations of these diseases by attenuating cell migration of the inflammatory cells and/or by their apoptotic killing. However, genetic deletion of CD44 by knockout technology enhanced the development of CIA because of molecular redundancy mediated by RHAMM (a receptor of hyaluronan‐mediated motility). The mechanisms that stand behind these findings are discussed.
Journal of Clinical Investigation | 2003
Shlomo Nedvetzki; Itshak Golan; Nathalie Assayag; Erez Gonen; Dan Caspi; Micha Gladnikoff; Avner Yayon; David Naor
Synovial fluid cells from joints of rheumatoid arthritis (RA) patients express a novel variant of CD44 (designated CD44vRA), encoding an extra trinucleotide (CAG) transcribed from intronic sequences flanking a variant exon. The CD44vRA mutant was detected in 23 out of 30 RA patients. CD44-negative Namalwa cells transfected with CD44vRA cDNA or with CD44v3-v10 (CD44vRA wild type) cDNA bound FGF-2 to an equal extent via their associated heparan sulfate chains. However, Namalwa cells, immobilizing FGF-2 via their cell surface CD44vRA, bound substantially more soluble FGF receptor-1 (FGFR-1) than did Namalwa cells immobilizing the same amount of FGF-2 via their cell surface CD44v3-v10. The former cells stimulated the proliferation of BaF-32 cells, bearing FGFR-1, more efficiently than did the latter cells. Finally, isolated primary synovial fluid cells from RA patients expressing CD44vRA bound more soluble FGFR-1 to their cell surface-associated FGF-2 than did corresponding synovial cells expressing CD44v3-v10 or synovial cells from osteoarthritis patients. The binding of soluble FGFR-1 to RA synovial cells could be specifically reduced by their preincubation with Abs against the v3 exon product of CD44. Hence, FGF-2 attached to the heparan sulfate moiety expressed by the novel CD44 variant of RA synovium cells exhibits an augmented ability to stimulate FGFR-1-mediated activities. A similar mechanism may foster the destructive inflammatory cascade not only in RA, but also in other autoimmune diseases.
Cell Adhesion and Communication | 2000
Mark Rochman; Jurgen Moll; Peter Herrlich; Shulamit Batya Wallach; Shlomo Nedvetzki; Ronit Vogt Sionov; Itshak Golan; Dvorah Ish-Shalom; David Naor
Migration of some tumor cells, and their lodgment in target organs, is dependent on the activation of cell surface CD44 receptor, usually detected by its ability to bind hyaluronic acid (HA) or other ligands. In an attempt to reveal the mechanism of tumor cell CD44 activation, we compared the physical and chemical properties of CD44 in nonactivated LB cell lymphoma with those in phorbol 12-myristate 13-acetate (PMA)-activated LB cells and of an LB cell subline (designated HA9) expressing constitutively-active CD44. In contrast to nonactivated LB cells, PMA-activated LB cells and HA9 cells displayed a CD44-dependent ability to bind HA. The ability of activated cell CD44 to bind HA was not dependent on microfilament or microtubule integrity or on changes in CD44 mobility on the membrane plane, indicating that the CD44 activation status is not associated with cytoskeleton function. Aside from the increased expression of CD44 on the surface of PMA-activated LB cells and HA9 cells, qualitative differences between the CD44 of nonactivated and activated LB cells were also detected: the CD44 of the activated lymphoma was (i) larger in molecular size, (ii) displayed a broader CD44 isoform repertoire, including a CD44 variant that binds HA, and (iii) its glycoprotein contained less sialic acid. Indeed, after removal of sialic acid from their cell surface by neuraminidase, LB cells acquired the ability to bind HA. However, a reduced dose of neuraminidase did not confer HA binding on LB cells, unless they were also activated by a low concentration of PMA, which by itself was ineffective. Similarly, under suboptimal conditions, a synergistic effect was obtained with tunicamycin and PMA: each one alone was ineffective but in combination they induced the acquisition of HA binding by the lymphoma cells, while their CD44 expression was not enhanced. Unveiling of the activation mechanism of CD44, by exposing the cells to PMA stimulation or to deglycosylation, is not only academically important, but it also has practical implications, as activated CD44 may be involved in the support of tumor progression.
The Open Rheumatology Journal | 2009
Ira Litinsky; Itshak Golan; Michael Yaron; Ilana Yaron; Dan Caspi; Ori Elkayam
Background: Statins (3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors) exert favorable effects on lipoprotein metabolism, but appeared to possess anti-inflammatory properties among others, as suggested by their ability to inhibit collagen-induced arthritis in mice. Their activity in fibroblast-like synovial cells (FLS) has not yet been studied. Objectives: To evaluate the effect of varying doses of simvastatin on apoptosis of FLS. Methods: Synovial tissue, obtained during total knee replacement due to osteoarthritis, was cut into small pieces and cultured in Petri dishes with test materials, as previously described. FLS were incubated for 48 hours with 1 μmol/ml, 5 μmol/ ml, 15 μmol/ml and 50 μmol/ml of simvastatin. Following incubation, apoptosis was analyzed by two-dimensional flow cytometry (FACS) using annexin V/PI staining according to the manufacturer’s instructions. Results: Different concentrations of simvastatin induced apoptosis of FLS. The level proportion of apoptotic cells of resting or activated with lipopolysaccharide (LPS; 3 μg/ml) FLS, not treated with simvastatin, was 21%. At 48 hours, the rate of apoptosis of activated fibroblasts, incubated with 1 μmol/ml, 5 μmol/ml, 15 and 50 μmol/ml was 22%, 32%, 48% and 41% respectively. Synovial cell viability evaluated by tetrazolium salt XXT was unaffected by the simvastatin concentration used. Conclusion: Varying concentrations of simvastatin induce apoptosis of activated fibroblast-like synoviocytes, suggesting another possible mechanism of anti-inflammatory effects of statins in inflammatory conditions.
Journal of Autoimmunity | 2007
Itshak Golan; Shlomo Nedvetzki; Ira Golan; Lora Eshkar-Sebban; David Levartovsky; Ori Elkayam; Dan Caspi; Suhail Aamar; Howard Amital; Alan Rubinow; David Naor
Archive | 2000
David Naor; Itshak Golan; Shlomo Nedvetzki
Archive | 2005
David Naor; Shlomo Nedvetzki; Itshak Golan; Irina Kessel; Lora Melnik
Archive | 2004
David Naor; Itshak Golan