Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Itsuko Nakano is active.

Publication


Featured researches published by Itsuko Nakano.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Transcriptome-based systematic identification of extracellular matrix proteins

Ri-ichiroh Manabe; Ko Tsutsui; Tomiko Yamada; Mina Kimura; Itsuko Nakano; Chisei Shimono; Noriko Sanzen; Yutaka Furutani; Tomohiko Fukuda; Yasuko Oguri; Keiko Shimamoto; Daiji Kiyozumi; Yuya Sato; Yoshikazu Sado; Haruki Senoo; Shohei Yamashina; Shiro Fukuda; Jun Kawai; Nobuo Sugiura; Koji Kimata; Yoshihide Hayashizaki; Kiyotoshi Sekiguchi

Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized ECMs, however, have not been elucidated. Here, we describe a strategy for transcriptome-wide identification of ECM proteins based on computational screening of >60,000 full-length mouse cDNAs for secreted proteins, followed by in vitro functional assays. These assays screened the candidate proteins for ECM-assembling activities, interactions with other ECM molecules, modifications with glycosaminoglycans, and cell-adhesive activities, and were then complemented with immunohistochemical analysis. We identified 16 ECM proteins, of which seven were localized in basement membrane (BM) zones. The identification of these previously unknown BM proteins allowed us to construct a body map of BM proteins, which represents the comprehensive immunohistochemistry-based expression profiles of the tissue-specific customization of BMs.


Journal of Biological Chemistry | 2010

ADAMTSL-6 Is a Novel Extracellular Matrix Protein That Binds to Fibrillin-1 and Promotes Fibrillin-1 Fibril Formation

Ko Tsutsui; Ri-ichiroh Manabe; Tomiko Yamada; Itsuko Nakano; Yasuko Oguri; Douglas R. Keene; Gerhard Sengle; Lynn Y. Sakai; Kiyotoshi Sekiguchi

ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6α and -6β, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6α, in contrast to -6β, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6β binds to the N-terminal half of fibrillin-1 with a dissociation constant of ∼80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly.


Journal of Biological Chemistry | 2010

Activin A Binds to Perlecan through Its Pro-region That Has Heparin/Heparan Sulfate Binding Activity

Shaoliang Li; Chisei Shimono; Naoko Norioka; Itsuko Nakano; Tetsuo Okubo; Yoshiko Yagi; Maria Hayashi; Yuya Sato; Hitomi Fujisaki; Shunji Hattori; Nobuo Sugiura; Koji Kimata; Kiyotoshi Sekiguchi

Activin A, a member of the transforming growth factor-β family, plays important roles in hormonal homeostasis and embryogenesis. In this study, we produced recombinant human activin A and examined its abilities to bind to extracellular matrix proteins. Recombinant activin A expressed in 293-F cells was purified as complexes of mature dimeric activin A with its pro-region. Among a panel of extracellular matrix proteins tested, recombinant activin A bound to perlecan and agrin, but not to laminins, nidogens, collagens I and IV, fibronectin, and nephronectin. The binding of recombinant activin A to perlecan was inhibited by heparin and high concentrations of NaCl and abolished by heparitinase treatment of perlecan, suggesting that activin A binds to the heparan sulfate chains of perlecan. In support of this possibility, recombinant activin A was capable of directly binding to heparin and heparan sulfate chains. Site-directed mutagenesis of recombinant activin A revealed that clusters of basic amino acid residues, Lys259-Lys263 and Lys270-Lys272, in the pro-region were required for binding to perlecan. Interestingly, deletion of the peptide segment Lys259-Gly277 containing both basic amino acid clusters from the pro-region did not impair the activity of activin A to stimulate Smad-dependent gene expressions, although it completely ablated the perlecan-binding activity. The binding of activin A to basement membrane heparan sulfate proteoglycans through the basic residues in the pro-region was further confirmed by in situ activin A overlay assays using frozen tissue sections. Taken together, the present results indicate that activin A binds to heparan sulfate proteoglycans through its pro-region and thereby regulates its localization within tissues.


Journal of Biological Chemistry | 2012

Polydom/SVEP1 Is a Ligand for Integrin α9β1

Ryoko Sato-Nishiuchi; Itsuko Nakano; Akio Ozawa; Yuya Sato; Makiko Takeichi; Daiji Kiyozumi; Kiyoshi Yamazaki; Teruo Yasunaga; Sugiko Futaki; Kiyotoshi Sekiguchi

Background: Polydom/SVEP1 is a putative extracellular matrix protein of unknown function. Results: Polydom/SVEP1 is a potent ligand for integrin α9β1 and colocalizes with the integrin in vivo. Conclusion: Polydom/SVEP1 is a hitherto unknown high affinity ligand for integrin α9β1. Significance: The identification of this high affinity ligand offers important clues toward better understanding of the consequences of integrin α9β1-mediated cell-extracellular matrix interactions. A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9β1. However, their affinities for integrin α9β1 are apparently much lower than those of other integrins (e.g. α3β1, α5β1, and α8β1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9β1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9β1-dependent manner and binds directly to recombinant integrin α9β1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636–2644) in the 21st complement control protein domain was involved in the binding to integrin α9β1 and that Glu2641 was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9β1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9β1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9β1 that functions as a physiological ligand in vivo.


Journal of Cell Biology | 2012

Basement membrane assembly of the integrin α8β1 ligand nephronectin requires Fraser syndrome–associated proteins

Daiji Kiyozumi; Makiko Takeichi; Itsuko Nakano; Yuya Sato; Tomohiko Fukuda; Kiyotoshi Sekiguchi

QBRICK facilitates the integrin α8β1–dependent interactions of cells with basement membranes by regulating the basement membrane assembly of nephronectin.


Matrix Biology | 2013

Nephronectin binds to heparan sulfate proteoglycans via its MAM domain.

Yuya Sato; Chisei Shimono; Shaoliang Li; Itsuko Nakano; Naoko Norioka; Nobuo Sugiura; Koji Kimata; Masashi Yamada; Kiyotoshi Sekiguchi

Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.


Circulation Research | 2017

Polydom Is an Extracellular Matrix Protein Involved in Lymphatic Vessel Remodeling

Nanami Morooka; Sugiko Futaki; Ryoko Sato-Nishiuchi; Masafumi Nishino; Yuta Totani; Chisei Shimono; Itsuko Nakano; Hiroyuki Nakajima; Naoki Mochizuki; Kiyotoshi Sekiguchi

Rationale: Lymphatic vasculature constitutes a second vascular system essential for immune surveillance and tissue fluid homeostasis. Maturation of the hierarchical vascular structure, with a highly branched network of capillaries and ducts, is crucial for its function. Environmental cues mediate the remodeling process, but the mechanism that underlies this process is largely unknown. Objective: Polydom (also called Svep1) is an extracellular matrix protein identified as a high-affinity ligand for integrin &agr;9&bgr;1. However, its physiological function is unclear. Here, we investigated the role of Polydom in lymphatic development. Methods and Results: We generated Polydom-deficient mice. Polydom−/− mice showed severe edema and died immediately after birth because of respiratory failure. We found that although a primitive lymphatic plexus was formed, it failed to undergo remodeling in Polydom−/− embryos, including sprouting of new capillaries and formation of collecting lymphatic vessels. Impaired lymphatic development was also observed after knockdown/knockout of polydom in zebrafish. Polydom was deposited around lymphatic vessels, but secreted from surrounding mesenchymal cells. Expression of Foxc2 (forkhead box protein c2), a transcription factor involved in lymphatic remodeling, was decreased in Polydom−/− mice. Polydom bound to the lymphangiogenic factor Ang-2 (angiopoietin-2), which was found to upregulate Foxc2 expression in cultured lymphatic endothelial cells. Expressions of Tie1/Tie2 receptors for angiopoietins were also decreased in Polydom−/− mice. Conclusions: Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Ang-2 and Tie1/Tie2 receptor system.


PLOS ONE | 2017

Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining.

Ryuichiro Kurata; Sugiko Futaki; Itsuko Nakano; Fumitaka Fujita; Atsushi Tanemura; Hiroyuki Murota; Ichiro Katayama; Fumihiro Okada; Kiyotoshi Sekiguchi

Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion.


Life Science Alliance | 2018

Laminin γ1 C-terminal Glu to Gln mutation induces early postimplantation lethality

Daiji Kiyozumi; Yukimasa Taniguchi; Itsuko Nakano; Junko Toga; Emiko Yagi; Hidetoshi Hasuwa; Masahito Ikawa; Kiyotoshi Sekiguchi

Mouse embryos with an ablated ability of integrins to bind laminins are still able to form basement membranes, but die just after implantation because of deficient extraembryonic development. Laminin–integrin interactions regulate various adhesion-dependent cellular processes. γ1C-Glu, the Glu residue in the laminin γ1 chain C-terminal tail, is crucial for the binding of γ1-laminins to several integrin isoforms. Here, we investigated the impact of γ1C Glu to Gln mutation on γ1-laminin binding to all possible integrin partners in vitro, and found that the mutation specifically ablated binding to α3, α6, and α7 integrins. To examine the physiological significance of γ1C-Glu, we generated a knock-in allele, Lamc1EQ, in which the γ1C Glu to Gln mutation was introduced. Although Lamc1EQ/EQ homozygotes developed into blastocysts and deposited laminins in their basement membranes, they died just after implantation because of disordered extraembryonic development. Given the impact of the Lamc1EQ allele on embryonic development, we developed a knock-in mouse strain enabling on-demand introduction of the γ1C Glu to Gln mutation by the Cre-loxP system. The present study has revealed a crucial role of γ1C-Glu–mediated integrin binding in postimplantation development and provides useful animal models for investigating the physiological roles of laminin–integrin interactions in vivo.


Biochemical and Biophysical Research Communications | 2011

Fused pulmonary lobes is a rat model of human Fraser syndrome.

Daiji Kiyozumi; Itsuko Nakano; Ken Takahashi; Hitoshi Hojo; Hiroaki Aoyama; Kiyotoshi Sekiguchi

Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigated whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.

Collaboration


Dive into the Itsuko Nakano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Kimata

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Nobuo Sugiura

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge