Itzel Llorente
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Itzel Llorente.
Nature Neuroscience | 2008
Héctor Salazar; Itzel Llorente; Andrés Jara-Oseguera; Refugio García-Villegas; Mika Munari; Sharona E. Gordon; León D. Islas; Tamara Rosenbaum
Some members of the transient receptor potential (TRP) family of cation channels mediate sensory responses to irritant substances. Although it is well known that TRPA1 channels are activated by pungent compounds found in garlic, onion, mustard and cinnamon extracts, activation of TRPV1 by these extracts remains controversial. Here we establish that TRPV1 is activated by pungent extracts from onion and garlic, as well as by allicin, the active compound in these preparations, and participates together with TRPA1 in the pain-related behavior induced by this compound. We found that in TRPV1 these agents act by covalent modification of cysteine residues. In contrast to TRPA1 channels, modification of a single cysteine located in the N-terminal region of TRPV1 was necessary and sufficient for all the effects we observed. Our findings point to a conserved mechanism of activation in TRP channels, which provides new insights into the molecular basis of noxious stimuli detection.
Nature Chemical Biology | 2012
Andrés Nieto-Posadas; Giovanni Picazo-Juárez; Itzel Llorente; Andrés Jara-Oseguera; Sara L. Morales-Lázaro; Diana Escalante-Alcalde; León D. Islas; Tamara Rosenbaum
Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.
Journal of Biological Chemistry | 2011
Giovanni Picazo-Juárez; Silvina Romero-Suárez; Andrés Nieto-Posadas; Itzel Llorente; Andrés Jara-Oseguera; Margaret M. Briggs; Thomas J. McIntosh; Sidney A. Simon; Ernesto Ladrón-de-Guevara; León D. Islas; Tamara Rosenbaum
The TRPV1 ion channel serves as an integrator of noxious stimuli with its activation linked to pain and neurogenic inflammation. Cholesterol, a major component of cell membranes, modifies the function of several types of ion channels. Here, using measurements of capsaicin-activated currents in excised patches from TRPV1-expressing HEK cells, we show that enrichment with cholesterol, but not its diastereoisomer epicholesterol, markedly decreased wild-type rat TRPV1 currents. Substitutions in the S5 helix, rTRPV1-R579D, and rTRPV1-F582Q, decreased this cholesterol response and rTRPV1-L585I was insensitive to cholesterol addition. Two human TRPV1 variants, with different amino acids at position 585, had different responses to cholesterol with hTRPV1-Ile585 being insensitive to this molecule. However, hTRPV1-I585L was inhibited by cholesterol addition similar to rTRPV1 with the same S5 sequence. In the absence of capsaicin, cholesterol enrichment also inhibited TRPV1 currents induced by elevated temperature and voltage. These data suggest that there is a cholesterol-binding site in TRPV1 and that the functions of TRPV1 depend on the genetic variant and membrane cholesterol content.
Nature Structural & Molecular Biology | 2009
Héctor Salazar; Andrés Jara-Oseguera; Enrique Hernández-García; Itzel Llorente; Imilla I. Arias-Olguín; Manuel Soriano-García; León D. Islas; Tamara Rosenbaum
Transient receptor potential vanilloid 1 (TRPV1) channels mediate several types of physiological responses. Despite the importance of these channels in pain detection and inflammation, little is known about how their structural components convert different types of stimuli into channel activity. To localize the activation gate of these channels, we inserted cysteines along the S6 segment of mutant TRPV1 channels and assessed their accessibility to thiol-modifying agents. We show that access to the pore of TRPV1 is gated by S6 in response to both capsaicin binding and increases in temperature, that the pore-forming S6 segments are helical structures and that two constrictions are present in the pore: one that impedes the access of large molecules and the other that hampers the access of smaller ions and constitutes an activation gate of these channels.
The Journal of General Physiology | 2008
Andrés Jara-Oseguera; Itzel Llorente; Tamara Rosenbaum; León D. Islas
The transient receptor potential vanilloid 1 (TRPV1) nonselective cationic channel is a polymodal receptor that activates in response to a wide variety of stimuli. To date, little structural information about this channel is available. Here, we used quaternary ammonium ions (QAs) of different sizes in an effort to gain some insight into the nature and dimensions of the pore of TRPV1. We found that all four QAs used, tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium, and tetrapentylammonium, block the TRPV1 channel from the intracellular face of the channel in a voltage-dependent manner, and that block by these molecules occurs with different kinetics, with the bigger molecules becoming slower blockers. We also found that TPrA and the larger QAs can only block the channel in the open state, and that they interfere with the channels activation gate upon closing, which is observed as a slowing of tail current kinetics. TEA does not interfere with the activation gate, indicating that this molecule can reside in its blocking site even when the channel is closed. The dependence of the rate constants on the size of the blocker suggests a size of around 10 Å for the inner pore of TRPV1 channels.
Journal of Biological Chemistry | 2014
Sara L. Morales-Lázaro; Barbara Serrano-Flores; Itzel Llorente; Enrique Hernández-García; Ricardo González-Ramírez; Souvik Banerjee; Duane D. Miller; Veeresh Gududuru; James I. Fells; Derek D. Norman; Gabor Tigyi; Diana Escalante-Alcalde; Tamara Rosenbaum
Background: The TRPV1 ion channel can be regulated by negatively charged lipids. Results: TRPV1 shows specificity for LPA analogs containing monounsaturated hydrocarbon chains with a negatively charged phosphate, cyclic phosphate, and thiophosphate headgroup. Conclusion: TRPV1 activation is highly restricted to natural lipids with oleyl or oleoyl side chains. Significance: Production of endogenous C18:1 lysophospholipids can selectively trigger activation of TRPV1 and nociceptive neuronal responses. The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1.
Nature Communications | 2016
Sara L. Morales-Lázaro; Itzel Llorente; Félix Sierra-Ramírez; Ana E. López-Romero; Miguel Ortíz-Rentería; Barbara Serrano-Flores; Sidney A. Simon; León D. Islas; Tamara Rosenbaum
The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Miguel Ortíz-Rentería; Rebeca Juárez-Contreras; Ricardo González-Ramírez; León D. Islas; Félix Sierra-Ramírez; Itzel Llorente; Sidney A. Simon; Marcia Hiriart; Tamara Rosenbaum; Sara L. Morales-Lázaro
Significance The TRPV1 ion channel has been widely associated with the generation of painful responses. The responses of cells expressing this ion channel and, presumably, the overall pain response of an organism may be regulated by controlling the amount of TRPV1 channels in the plasma membrane. TRPV1 levels can be regulated by its interaction with intracellular proteins, but there are no studies describing TRPV1 or any other mammalian TRP channel’s association with chaperones or how these interactions may affect the perception of pain. Here, we show that TRPV1-dependent pain is decreased through Sig-1R antagonism by progesterone and determine the presence of a physical interaction between these two proteins that may reduce pain under physiological conditions such as pregnancy. The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.
Channels | 2009
León D. Islas; Héctor Salazar; Andrés Jara-Oseguera; Andrés Nieto-Posadas; Itzel Llorente; Gisela E. Rangel-Yescas; Tamara Rosenbaum
The era of the molecular structure of ion channels has revealed that their transmembrane segments are alpha helices, as was suspected from hydropathy analysis and experimental data. TRP channels are recent additions to the known families of ion channels and little structural data is available. In a recent work, we explored the conformational changes occurring at the putative S6 segment of TRPV1 channels and observed a periodicity of chemical modification of residues suggestive of an alpha helical structure. Further analysis of the periodicity of the disposition of hydrophobic residues in the S6 segment, suggests that the general architecture of the TRPV1 S6 segment, is very similar to that of voltage-dependent channels of known structure—an aqueous cavity lined by an amphipathic alpha helix, with most of the hydrophobic residues pointing into it.
Nature Chemical Biology | 2012
Andrés Nieto-Posadas; Giovanni Picazo-Juárez; Itzel Llorente; Andrés Jara-Oseguera; Sara L. Morales-Lázaro; Diana Escalante-Alcalde; León D. Islas; Tamara Rosenbaum