Itzhel García-Torres
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Itzhel García-Torres.
International Journal of Molecular Sciences | 2014
Saúl Gómez-Manzo; Jessica Terrón-Hernández; Ignacio De la Mora-De la Mora; Abigail González-Valdez; Jaime Marcial-Quino; Itzhel García-Torres; America Vanoye-Carlo; Gabriel López-Velázquez; Gloria Hernández-Alcántara; Jesús Oria-Hernández; Horacio Reyes-Vivas; Sergio Enríquez-Flores
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The kcat (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability.
PLOS ONE | 2011
Itzhel García-Torres; Nallely Cabrera; Mónica Rodríguez-Bolaños; Selma Díaz-Mazariegos; Armando Gómez-Puyou; Ruy Pérez-Montfort
For a better comprehension of the structure-function relationship in proteins it is necessary to identify the amino acids that are relevant for measurable protein functions. Because of the numerous contacts that amino acids establish within proteins and the cooperative nature of their interactions, it is difficult to achieve this goal. Thus, the study of protein-ligand interactions is usually focused on local environmental structural differences. Here, using a pair of triosephosphate isomerase enzymes with extremely high homology from two different organisms, we demonstrate that the control of a seventy-fold difference in reactivity of the interface cysteine is located in several amino acids from two structurally unrelated regions that do not contact the cysteine sensitive to the sulfhydryl reagent methylmethane sulfonate, nor the residues in its immediate vicinity. The change in reactivity is due to an increase in the apparent pKa of the interface cysteine produced by the mutated residues. Our work, which involved grafting systematically portions of one protein into the other protein, revealed unsuspected and multisite long-range interactions that modulate the properties of the interface cysteines and has general implications for future studies on protein structure-function relationships.
PLOS ONE | 2013
Gloria Hernández-Alcántara; Sergio Enríquez-Flores; Itzhel García-Torres; Adriana Castillo-Villanueva; Sara T. Méndez; Ignacio De la Mora-De la Mora; Saúl Gómez-Manzo; Angélica Torres-Arroyo; Gabriel López-Velázquez; Horacio Reyes-Vivas; Jesús Oria-Hernández
Background We have previously proposed triosephosphate isomerase of Giardia lamblia (GlTIM) as a target for rational drug design against giardiasis, one of the most common parasitic infections in humans. Since the enzyme exists in the parasite and the host, selective inhibition is a major challenge because essential regions that could be considered molecular targets are highly conserved. Previous biochemical evidence showed that chemical modification of the non-conserved non-catalytic cysteine 222 (C222) inactivates specifically GlTIM. The inactivation correlates with the physicochemical properties of the modifying agent: addition of a non-polar, small chemical group at C222 reduces the enzyme activity by one half, whereas negatively charged, large chemical groups cause full inactivation. Results In this work we used mutagenesis to extend our understanding of the functional and structural effects triggered by modification of C222. To this end, six GlTIM C222 mutants with side chains having diverse physicochemical characteristics were characterized. We found that the polarity, charge and volume of the side chain in the mutant amino acid differentially alter the activity, the affinity, the stability and the structure of the enzyme. The data show that mutagenesis of C222 mimics the effects of chemical modification. The crystallographic structure of C222D GlTIM shows the disruptive effects of introducing a negative charge at position 222: the mutation perturbs loop 7, a region of the enzyme whose interactions with the catalytic loop 6 are essential for TIM stability, ligand binding and catalysis. The amino acid sequence of TIM in phylogenetic diverse groups indicates that C222 and its surrounding residues are poorly conserved, supporting the proposal that this region is a good target for specific drug design. Conclusions The results demonstrate that it is possible to inhibit species-specifically a ubiquitous, structurally highly conserved enzyme by modification of a non-conserved, non-catalytic residue through long-range perturbation of essential regions.
Antimicrobial Agents and Chemotherapy | 2014
Horacio Reyes-Vivas; Ignacio De la Mora-De la Mora; Adriana Castillo-Villanueva; Lilián Yépez-Mulia; Gloria Hernández-Alcántara; Rosalia Figueroa-Salazar; Itzhel García-Torres; Saúl Gómez-Manzo; Sara T. Méndez; America Vanoye-Carlo; Jaime Marcial-Quino; Angélica Torres-Arroyo; Jesús Oria-Hernández; Pedro Gutiérrez-Castrellón; Sergio Enríquez-Flores; Gabriel López-Velázquez
ABSTRACT Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.
PLOS ONE | 2015
Ignacio De la Mora-De la Mora; Sergio Enríquez-Flores; Sara-Teresa Méndez; Adriana Castillo-Villanueva; Saúl Gómez-Manzo; Gabriel López-Velázquez; Jaime Marcial-Quino; Angélica Torres-Arroyo; Itzhel García-Torres; Horacio Reyes-Vivas; Jesús Oria-Hernández
Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM), an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D) were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.
Biochimica et Biophysica Acta | 2016
Itzhel García-Torres; Ignacio De la Mora-De la Mora; Jaime Marcial-Quino; Saúl Gómez-Manzo; America Vanoye-Carlo; Gabriel Navarrete-Vázquez; Blanca Colín-Lozano; Pedro Gutiérrez-Castrellón; Edgar Sierra-Palacios; Gabriel López-Velázquez; Sergio Enríquez-Flores
BACKGROUND Proton pump inhibitors (PPIs) are extensively used in clinical practice because of their effectiveness and safety. Omeprazole is one of the best-selling drugs worldwide and, with other PPIs, has been proposed to be potential drugs for the treatment of several diseases. We demonstrated that omeprazole shows cytotoxic effects in Giardia and concomitantly inactivates giardial triosephosphate isomerase (GlTIM). Therefore, we evaluated the efficiency of commercially available PPIs to inactivate this enzyme. METHODS We assayed the effect of PPIs on the GlTIM WT, single Cys mutants, and the human counterpart, following enzyme activity, thermal stability, exposure of hydrophobic regions, and susceptibility to limited proteolysis. RESULTS PPIs efficiently inactivated GlTIM; however, rabeprazole was the best inactivating drug and was nearly ten times more effective. The mechanism of inactivation by PPIs was through the modification of the Cys 222 residue. Moreover, there are important changes at the structural level, the thermal stability of inactivated-GlTIM was drastically diminished and the structural rigidity was lost, as observed by the exposure of hydrophobic regions and their susceptibility to limited proteolysis. CONCLUSIONS Our results demonstrate that rabeprazole is the most potent PPI for GlTIM inactivation and that all PPIs tested have substantial abilities to alter GITIM at the structural level, causing serious damage. GENERAL SIGNIFICANCE This is the first report demonstrating the effectiveness of commercial PPIs on a glycolytic parasitic enzyme, with structural features well known. This study is a step forward in the use and understanding the implicated mechanisms of new antigiardiasic drugs safe in humans.
Biochimica et Biophysica Acta | 2013
Ignacio De la Mora-De la Mora; Guillermo Mendoza-Hernández; Sergio Enríquez-Flores; Adriana Castillo-Villanueva; Sara T. Méndez; Itzhel García-Torres; Angélica Torres-Arroyo; Saúl Gómez-Manzo; Jaime Marcial-Quino; Jesús Oria-Hernández; Gabriel López-Velázquez; Horacio Reyes-Vivas
The deficiency of human triosephosphate isomerase (HsTIM) generates neurological alterations, cardiomyopathy and premature death. The mutation E104D is the most frequent cause of the disease. Although the wild type and mutant exhibit similar kinetic parameters, it has been shown that the E104D substitution induces perturbation of an interfacial water network that, in turn, reduces the association constant between subunits promoting enzyme inactivation. To gain further insight into the effects of the mutation on the structure, stability and function of the enzyme, we measured the sensitivity of recombinant E104D mutant and wild type HsTIM to limited proteolysis. The mutation increases the susceptibility to proteolysis as consequence of the loss of rigidity of its overall 3-D structure. Unexpectedly, it was observed that proteolysis of wild type HsTIM generated two different stable nicked dimers. One was formed in relatively short times of incubation with proteinase K; as shown by spectrometric and crystallographic data, it corresponded to a dimer containing a nicked monomer and an intact monomer. The formation of the other nicked species requires relatively long incubation times with proteinase K and corresponds to a dimer with two clipped subunits. The first species retains 50% of the original activity, whereas the second species is inactive. Collectively, we found that the E104D mutant is highly susceptible to proteolysis, which in all likelihood contributes to the pathogenesis of enzymopathy. In addition, the proteolysis data on wild type HsTIM illustrate an asymmetric conduct of the two monomers.
Gene | 2016
Jaime Marcial-Quino; Francisco Fierro; Ignacio De la Mora-De la Mora; Sergio Enríquez-Flores; Saúl Gómez-Manzo; America Vanoye-Carlo; Itzhel García-Torres; Edgar Sierra-Palacios; Horacio Reyes-Vivas
The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia.
Nutrients | 2015
Gabriel López-Velázquez; Minerva Parra-Ortiz; Ignacio De la Mora-De la Mora; Itzhel García-Torres; Sergio Enríquez-Flores; Miguel Angel Alcántara-Ortigoza; Ariadna González-del Angel; José A. Velázquez-Aragón; Rosario Ortiz-Hernández; José Manuel Cruz-Rubio; Pablo Villa-Barragán; Carlos Jiménez-Gutiérrez; Pedro Gutiérrez-Castrellón
Background: The importance of prebiotics consumption is increasing all over the world due to their beneficial effects on health. Production of better prebiotics from endemic plants raises possibilities to enhance nutritional effects in vulnerable population groups. Fructans derived from Agave Plant have demonstrated their safety and efficacy as prebiotics in animal models. Recently, the safety in humans of two fructans obtained from Agave tequilana (Metlin® and Metlos®) was demonstrated. Methods: This study aimed to demonstrate the efficacy as prebiotics of Metlin® and Metlos® in newborns of a randomized, double blind, controlled trial with a pilot study design. Biological samples were taken at 20 ± 7 days, and three months of age from healthy babies. Outcomes of efficacy include impact on immune response, serum ferritin, C-reactive protein, bone metabolism, and gut bacteria changes. Results: There were differences statistically significant for the groups of infants fed only with infant formula and with formula enriched with Metlin® and Metlos®. Conclusions: Our results support the efficacy of Metlin® and Metlos® as prebiotics in humans, and stand the bases to recommend their consumption. Trial Registration: ClinicalTrials.gov, NCT 01251783.
International Journal of Molecular Sciences | 2015
Saúl Gómez-Manzo; José Edgardo Escamilla; Abigail González-Valdez; Gabriel López-Velázquez; America Vanoye-Carlo; Jaime Marcial-Quino; Ignacio De la Mora-De la Mora; Itzhel García-Torres; Sergio Enríquez-Flores; Roberto Arreguín-Espinosa; Peter M. H. Kroneck; Martha E. Sosa-Torres
Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.