Iulia A. Kovari
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iulia A. Kovari.
Biochemical and Biophysical Research Communications | 2011
Yong Wang; Zhigang Liu; Joseph S. Brunzelle; Iulia A. Kovari; Tamaria G. Dewdney; Samuel J. Reiter; Ladislau C. Kovari
Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82 mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.
Molecular and Cellular Biology | 1990
Ladislau C. Kovari; Roberta Sumrada; Iulia A. Kovari; Terrance G. Cooper
Expression of the arginase (CAR1) gene in Saccharomyces cerevisiae is induced by arginine or its analog homoarginine. Induction has been previously shown to require a negatively acting upstream repression sequence, which maintains expression of the gene at a low level in the absence of inducer. The objective of this work was to identify the cis-acting elements responsible for CAR1 transcriptional activation and response to inducer. We identified three upstream activation sequences (UASs) that support transcriptional activation in a heterologous expression vector. Two of these UAS elements function in the absence of inducer, whereas the third functions only when inducer is present. One of the inducer-independent UAS elements exhibits significant homology to the Sp1 factor-binding sites identified in simian virus 40 and various mammalian genes.
Protein Journal | 2011
Zhigang Liu; Yong Wang; Joseph S. Brunzelle; Iulia A. Kovari; Ladislau C. Kovari
Under drug selection pressure, emerging mutations render HIV-1 protease drug resistant, leading to the therapy failure in anti-HIV treatment. It is known that nine substrate cleavage site peptides bind to wild type (WT) HIV-1 protease in a conserved pattern. However, how the multidrug-resistant (MDR) HIV-1 protease binds to the substrate cleavage site peptides is yet to be determined. MDR769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) was selected for present study to understand the binding to its natural substrates. MDR769 HIV-1 protease was co-crystallized with nine substrate cleavage site hepta-peptides. Crystallographic studies show that MDR769 HIV-1 protease has an expanded substrate envelope with wide open flaps. Furthermore, ligand binding energy calculations indicate weaker binding in MDR769 HIV-1 protease-substrate complexes. These results help in designing the next generation of HIV-1 protease inhibitors by targeting the MDR HIV-1 protease.
Biochemical and Biophysical Research Communications | 2012
Ravikiran S. Yedidi; Zhigang Liu; Yong Wang; Joseph S. Brunzelle; Iulia A. Kovari; Patrick M. Woster; Ladislau C. Kovari; Deepak Gupta
Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.
Biology | 2012
Yong Wang; Tamaria G. Dewdney; Zhigang Liu; Samuel J. Reiter; Joseph S. Brunzelle; Iulia A. Kovari; Ladislau C. Kovari
Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.
Biochemical and Biophysical Research Communications | 2013
Zhigang Liu; Yong Wang; Ravikiran S. Yedidi; Tamaria G. Dewdney; Samuel J. Reiter; Joseph S. Brunzelle; Iulia A. Kovari; Ladislau C. Kovari
The success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. In addition, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.
Biochemical and Biophysical Research Communications | 2013
Zhigang Liu; Ravikiran S. Yedidi; Yong Wang; Tamaria G. Dewdney; Samuel J. Reiter; Joseph S. Brunzelle; Iulia A. Kovari; Ladislau C. Kovari
Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC(50) of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.
Biochemical and Biophysical Research Communications | 2013
Zhigang Liu; Ravikiran S. Yedidi; Yong Wang; Tamaria G. Dewdney; Samuel J. Reiter; Joseph S. Brunzelle; Iulia A. Kovari; Ladislau C. Kovari
Lopinavir (LPV) is a second generation HIV-1 protease inhibitor. Drug resistance has rapidly emerged against LPV since its US FDA approval on September 15, 2000. Mutations at residues 32I, L33F, 46I, 47A, I54V, V82A, I84V, and L90M render the protease drug resistant against LPV. We report the crystal structure of a clinical isolate multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) complexed with LPV and the in vitro enzymatic IC50 of LPV against MDR 769. The structural and functional studies demonstrate significant drug resistance of MDR 769 against LPV, arising from reduced interactions between LPV and the protease target.
Biochemistry and biophysics reports | 2015
Benjamin D. Kuiper; Bradley J. Keusch; Tamaria G. Dewdney; Poorvi Chordia; Kyla Ross; Joseph S. Brunzelle; Iulia A. Kovari; Rodger D. MacArthur; Hossein Salimnia; Ladislau C. Kovari
HIV-1 protease (PR) is a 99 amino acid protein responsible for proteolytic processing of the viral polyprotein – an essential step in the HIV-1 life cycle. Drug resistance mutations in PR that are selected during antiretroviral therapy lead to reduced efficacy of protease inhibitors (PI) including darunavir (DRV). To identify the structural mechanisms associated with the DRV resistance mutation L33F, we performed X-ray crystallographic studies with a multi-drug resistant HIV-1 protease isolate that contains the L33F mutation (MDR769 L33F). In contrast to other PR L33F DRV complexes, the structure of MDR769 L33F complexed with DRV reported here displays the protease flaps in an open conformation. The L33F mutation increases noncovalent interactions in the hydrophobic pocket of the PR compared to the wild-type (WT) structure. As a result, L33F appears to act as a molecular anchor, reducing the flexibility of the 30s loop (residues 29–35) and the 80s loop (residues 79–84). Molecular anchoring of the 30s and 80s loops leaves an open S1/S1′ subsite and distorts the conserved hydrogen-bonding network of DRV. These findings are consistent with previous reports despite structural differences with regards to flap conformation.
Journal of Structural Biology | 2013
Tamaria G. Dewdney; Yong Wang; Iulia A. Kovari; Samuel J. Reiter; Ladislau C. Kovari
HIV-1 integrase is an essential enzyme necessary for the replication of the HIV virus as it catalyzes the insertion of the viral genome into the host chromosome. Raltegravir was the first integrase inhibitor approved by the FDA for antiretroviral treatment. HIV patients on raltegravir containing regimens often develop drug resistance mutations at residue 140 and 148 in the catalytic 140s loop resulting in a 5-10 fold decrease in susceptibility to raltegravir. Obtaining crystallographic structure information on the Q148H/R, G140S/A primary and secondary mutations has been elusive. Using 10 ns molecular dynamics simulations, we present a detailed analysis of the structural changes induced by these mutations. The formation frequency of a transient helix in the catalytic 140s loop is increased and the length of this helix is extended from 3-residues to 4 in the mutants relative to the wild type. This helix causes reduced flexibility in the protein active site and therefore serves as a gating mechanism restricting the access of raltegravir to the integrase binding pocket. These results suggest that resistance to raltegravir occurs through a common mechanism of altering the formation frequency of transient secondary structures such as α2 and β5 in addition to the conformational changes in the 140s loop therefore decreasing the flexibility of the HIV-1 integrase protein. The reduced integrase flexibility serves as a mechanism of resistance to raltegravir.