Iuri E. Gouvea
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iuri E. Gouvea.
Anais Da Academia Brasileira De Ciencias | 2009
Rodrigo Luiz Oliveira Rodrigues Cunha; Iuri E. Gouvea; Luiz Juliano
Tellurium is a rare element which has been regarded as a toxic, non-essential trace element and its biological role is not clearly established to date. Besides of that, the biological effects of elemental tellurium and some of its inorganic and organic derivatives have been studied, leading to a set of interesting and promising applications. As an example, it can be highlighted the uses of alkali-metal tellurites and tellurates in microbiology, the antioxidant effects of organotellurides and diorganoditellurides and the immunomodulatory effects of the non-toxic inorganic tellurane, named AS-101, and the plethora of its uses. Inasmuch, the nascent applications of organic telluranes (organotelluranes) as protease inhibitors and its applications in disease models are the most recent contribution to the scenario of the biological effects and applications of tellurium and its compounds discussed in this manuscript.
Journal of Biological Chemistry | 2010
Marcia Y. Kondo; Debora N. Okamoto; Jorge A.N. Santos; Maria A. Juliano; Kohei Oda; Bindu Pillai; Michael N. G. James; Luiz Juliano; Iuri E. Gouvea
Scytalidoglutamic peptidase (SGP) is the prototype of fungal glutamic peptidases that are characteristically pepstatin insensitive. These enzymes have a unique catalytic dyad comprised of Gln53 and Glu136 that activate a bound water molecule for nucleophilic attack on the carbonyl carbon atom of the scissile peptide bond. The hydrolysis by SGP at peptide bonds with proline in the P1′ position is a rare event among peptidases that we investigated using the series of fluorescence resonance energy transfer peptides, Abz-KLXPSKQ-EDDnp, compared with the series Abz-KLXSSKQ-EDDnp. The preference observed in these two series for Phe and His over Leu, Ile, Val, Arg, and Lys, seems to be related to the structure of the S1 subsite of SGP. These results and the pH profiles of SGP activity showed that its S1 subsite can accommodate the benzyl group of Phe at pH 4 as well as the positively charged imidazolium group of His. In the pH range 2 to 7, SGP maintains its structure and activity, but at pH 8 or higher it is irreversibly denatured. The intrinsic fluorescence of the Trp residues of SGP were sensitive to the titration of carboxyl groups having low pK values; this can be attributed to the buried Asp57 and/or Asp43 as described in SGP three-dimensional structure. The solvent kinetic isotope effects and the proton inventory experiments support a mechanism for the glutamic peptidase SGP that involves the nucleophilic attack of the general base (Glu136) activated water, and establish a fundamental role of the S1 subsite interactions in promoting catalysis.
Analytical Biochemistry | 2012
Lilian C.G. Oliveira; Vinícius O. Silva; Debora N. Okamoto; Marcia Y. Kondo; Saara Maria Batista dos Santos; Isaura Y. Hirata; Marcelo A. Vallim; Renata C. Pascon; Iuri E. Gouvea; Maria A. Juliano; Luiz Juliano
Identification of synthetic peptide substrates for novel peptidases is an essential step for their study. With this purpose we synthesized fluorescence resonance energy transfer (FRET) peptide libraries Abz (or MCA)-GXXXXXQ-EDDnp and Abz (or MCA)-GXXZXXQ-EDDnp, where X consists of an equimolar mixture of all amino acids, the Z position is fixed with one of the proteinogenic amino acids (cysteine was excluded), Abz (ortho-aminobenzoic acid) or MCA ([7-amino-4-methyl]coumarin) is the fluorescence donor and Q-EDDnp (glutamine-[N-(2,4-dinitrophenyl)-ethylenediamine]) is the fluorescence acceptor. The peptide libraries MCA-GXXX↓XXQ-EDDnp and MCA-GXXZ↓XXQ-EDDnp were cleaved as indicated (↓) by trypsin, chymotrypsin, cathepsin L, pepsin A, and Eqolisin as confirmed by Edman degradation of the products derived from the digestion of these libraries. The best hydrolyzed Abz-GXXZXXQ-EDDnp sublibraries by these proteases, including Dengue 2 virus NS2B-NS3 protease, contained amino acids at the Z position that are reported to be well accepted by their S(1) subsite. The pH profiles of the hydrolytic activities of these canonical proteases on the libraries were similar to those reported for typical substrates. The FRET peptide libraries provide an efficient and simple approach for detecting nanomolar concentrations of endopeptidases and are useful for initial specificity characterization as performed for two proteases secreted by a Bacillus subtilis.
Biological Chemistry | 2009
Rodrigo L. O. R. Cunha; Iuri E. Gouvea; Geovana P.V. Feitosa; Marcio F.M. Alves; Dieter Brömme; João V. Comasseto; Ivarne L.S. Tersariol; Luiz Juliano
Abstract The inhibition of human cysteine cathepsins B, L, S and K was evaluated by a set of hypervalent tellurium compounds (telluranes) comprising both organic and inorganic derivatives. All telluranes studied showed a time- and concentration-dependent irreversible inhibition of the cathepsins, and their second-order inactivation rate constants were determined. The organic derivatives were potent inhibitors of the cathepsins and clear specificities were detected, which were parallel to their known substrate specificities. In all cases, the activity of the tellurane-inhibited cathepsins was recovered by treatment of the inactivated enzymes with reducing agents. The maximum stoichiometry of the reaction between cysteine residues and telluranes were also determined. The presented data indicate that it is possible to design organic compounds with a tellurium(IV) moiety as a novel warhead that covalently modifies the catalytic cysteine, and which also form strong interactions with subsites of cathepsins B, L, S and K, resulting in more specific inhibition.
Biochimica et Biophysica Acta | 2009
Debora N. Okamoto; Marcia Y. Kondo; Jorge A.N. Santos; Sawa Nakajima; Kazumi Hiraga; Kohei Oda; Maria A. Juliano; Luiz Juliano; Iuri E. Gouvea
The secreted extracellular subtilase SR5-3 from Halobacillus sp. bacterium, isolated from the high-salt environment of Thai fish sauce, was utilized as a model halophilic serine protease. The dependence of salt activation on the size and structure of substrates was evaluated assaying the enzyme with Suc-AAPF-MCA and with the Fluorescence Resonance Energy Transfer (FRET) peptide Abz-AAPFSSKQ-EDDnp. Solvent isotope effects (SIE) and the thermodynamic parameters for activation of the hydrolysis of Suc-AAPF-MCA and Abz-AAPFSSKQ-EDDnp by SR5-3 protease in the presence of salts were also performed. All the obtained results support the notion that the salting out effect is responsible for the halophilic character of SR5-3, and the magnitude of its hydrolytic activity is mainly derived from the improvement of catalytic and/or interaction steps depending on the nature and size of the substrates, principally if they occupy the substrate prime subsites.
Biochemistry | 2009
Jorge A.N. Santos; Iuri E. Gouvea; Wagner A.S. Judice; Mario Augusto Izidoro; Fabiana M. Alves; Robson L. Melo; Maria A. Juliano; Tim Skern; Luiz Juliano
Foot-and-mouth disease virus, a global animal pathogen, possesses a single-stranded RNA genome that, on release into the infected cell, is immediately translated into a single polyprotein. This polyprotein product is cleaved during synthesis by proteinases contained within it into the mature viral proteins. The first cleavage is performed by the leader protease (Lb(pro)) between its own C-terminus and the N-terminus of VP4. Lb(pro) also specifically cleaves the two homologues of cellular eukaryotic initiation factor (eIF) 4G, preventing translation of capped mRNA. Viral protein synthesis is initiated internally and is thus unaffected. We used a panel of specifically designed FRET peptides to examine the effects of pH and ionic strength on Lb(pro) activity and investigate the size of the substrate binding site and substrate specificity. Compared to the class prototypes, papain and the cathepsins, Lb(pro) possesses several unusual characteristics, including a high sensitivity to salt and a very specific substrate binding site extending up to P(7). Indeed, almost all substitutions investigated were detrimental to Lb(pro) activity. Analysis of structural data showed that Lb(pro) binds residues P(1)-P(3) in an extended conformation, whereas residues P(4)-P(7) are bound in a short 3(10) helix. The specificity of Lb(pro) as revealed by the substituted peptides could be explained for all positions except P(5). Strikingly, Lb(pro) residues L178 and L143 contribute to the architecture of more than one substrate binding pocket. The diverse functions of these two Lb(pro) residues explain why Lb(pro) is one of the smallest, but simultaneously most specific, papain-like enzymes.
Veterinary Microbiology | 2013
Lucas Moitinho-Silva; Marcia Y. Kondo; Lilian C.G. Oliveira; Debora N. Okamoto; Jéssica Andrade Paes; Maurício F.M. Machado; Camila Lopes Veronez; Guacyara Motta; Sheila Siqueira Andrade; Maria A. Juliano; Henrique Bunselmeyer Ferreira; Luiz Juliano; Iuri E. Gouvea
Bacterial proteases are important for metabolic processes and pathogenesis in host organisms. The bacterial swine pathogen Mycoplasma hyopneumoniae has 15 putative protease-encoding genes annotated, but none of them have been functionally characterized. To identify and characterize peptidases that could be relevant for infection of swine hosts, we investigated the peptidase activity present in the pathogenic 7448 strain of M. hyopneumoniae. Combinatorial libraries of fluorescence resonance energy transfer peptides, specific inhibitors and pH profiling were used to screen and characterize endopeptidase, aminopeptidase and carboxypeptidase activities in cell lysates. One metalloendopeptidase, one serine endopeptidase, and one aminopeptidase were detected. The detected metalloendopeptidase activity, prominent at neutral and basic pH ranges, was due to a thimet oligopeptidase family member (M3 family), likely an oligoendopeptidase F (PepF), which cleaved the peptide Abz-GFSPFRQ-EDDnp at the F-S bond. A chymotrypsin-like serine endopeptidase activity, possibly a subtilisin-like serine protease, was prominent at higher pH levels, and was characterized by its preference for a Phe residue at the P1 position of the substrate. The aminopeptidase P (APP) activity showed a similar profile to that of human membrane-bound APP. Genes coding for these three peptidases were identified and their transcription was confirmed in the 7448 strain. Furthermore, M. hyopneumoniae cell lysate peptidases showed effects on kallikrein-kinin system-like substrates, such as bradykinin-derived substrates and human high molecular weight kininogen. The M. hyopneumoniae peptidase activities, here characterized for the first time, may be important for bacterial survival strategies and thus represent possible targets for drug development against M. hyopneumoniae swine infections.
Protein and Peptide Letters | 2012
Sheila Siqueira Andrade; Mariana Cristina Cabral Silva; Iuri E. Gouvea; Marcia Y. Kondo; Maria A. Juliano; Misako U. Sampaio; Maria Luzia Oliva
Bauninia forficata is trivially known as cow paw, and popularly used in Brazil for treatment of diabetes mellitus. Denominated baupain a cysteine proteinase was purified from B. forficata leaves. In this study, we investigated the baupain effect on aggregation of isolated human platelets in vitro and the results show that baupain hinders thrombin - but not ADP- and collagen- induced platelet aggregation. With synthetic quenched-fluorescent peptides, the kinetics of the cleavage site of human proteinase-activated receptor 1 / 2 / 3 and 4 [PAR-1 / 2 / 3 and 4] by baupain was determined. In conclusion, similar to bromelain and papain, baupain hinders human platelets aggregation, probably through an unspecific cleavage in the Phe-Leu bond of PAR1.
BMC Cancer | 2016
Sheila Siqueira Andrade; Iuri E. Gouvea; Mariana Cristina Cabral Silva; Eloísa Dognani Castro; Cláudia Alessandra Andrade de Paula; Debora N. Okamoto; Lilian C.G. Oliveira; Giovani Bravin Peres; Tatiana F. Ottaiano; Gil Facina; Afonso Celso Pinto Nazário; Antonio Hugo J. F. M. Campos; Edgar J. Paredes-Gamero; Maria A. Juliano; Ismael D.C.G. Silva; Maria Luiza Vilela Oliva; Manoel João Batista Castello Girão
BackgroundBreast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions.MethodsPlatelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells.ResultsWe demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer.ConclusionsCathepsin K induces platelet dysfunction and affects signaling in breast cancer cells.
Peptides | 2016
Marcia Y. Kondo; Iuri E. Gouvea; Debora N. Okamoto; Jorge A.N. Santos; Caden Souccar; Kohei Oda; Luiz Juliano; Maria A. Juliano
Tripeptidyl peptidase I (TPP-I), also named ceroid lipofuscinosis 2 protease (CLN2p), is a serine carboxyl lysosomal protease involved in neurodegenerative diseases, and has both tripeptidyl amino- and endo- peptidase activities under different pH conditions. We developed fluorescence resonance energy transfer (FRET) peptides using tryptophan (W) as the fluorophore to study TPP-I hydrolytic properties based on previous detailed substrate specificity study (Tian Y. et al., J. Biol. Chem. 2006, 281:6559-72). Tripeptidyl amino peptidase activity is enhanced by the presence of amino acids in the prime side and the peptide NH2-RWFFIQ-EDDnp is so far the best substrate described for TPP-I. The hydrolytic parameters of this peptide and its analogues indicated that the S4 subsite of TPP-I is occluded and there is an electrostatic interaction of the positively charged substrate N-terminus amino group and a negative locus in the region of the enzyme active site. KCl activated TPP-I in contrast to the inhibition by Ca(2+) and NaCl. Solvent kinetic isotope effects (SKIEs) show the importance of the free N-terminus amino group of the substrates, whose absence results in a more complex solvent-dependent enzyme: substrate interaction and catalytic process. Like pure TPP-I, rat spleen and kidney homogenates cleaved NH2-RWFFIQ-EDDnp only at F-F bond and is not inhibited by pepstatin, E-64, EDTA or PMSF. The selectivity of NH2-RWFFIQ-EDDnp to TPP-I was also demonstrated by the 400 times higher k(cat)/K(M) compared to generally used substrate, NH2-AAF-MCA and by its resistance to hydrolysis by cathepsin D that is present in high levels in kidneys.