Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iuri Martin Goemann is active.

Publication


Featured researches published by Iuri Martin Goemann.


Journal of Endocrinology | 2011

Type 1 iodothyronine deiodinase in human physiology and disease Deiodinases: the balance of thyroid hormone

Ana Luiza Maia; Iuri Martin Goemann; Erika Laurini de Souza Meyer; Simone Magagnin Wajner

Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T 4 ) molecule, thus producing either the active form triiodothyronine (T 3 ; activation) or inactive metabolites (reverse T 3 ; inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T 3 production contributes to a portion of plasma T 3 in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T 3 concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T(4)) molecule, thus producing either the active form triiodothyronine (T(3); activation) or inactive metabolites (reverse T(3); inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T(3) production contributes to a portion of plasma T(3) in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T(3) concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.


Journal of Endocrinology | 2011

Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease.

Ana Luiza Maia; Iuri Martin Goemann; Erika Laurini de Souza Meyer; Simone Magagnin Wajner

Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T 4 ) molecule, thus producing either the active form triiodothyronine (T 3 ; activation) or inactive metabolites (reverse T 3 ; inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T 3 production contributes to a portion of plasma T 3 in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T 3 concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T(4)) molecule, thus producing either the active form triiodothyronine (T(3); activation) or inactive metabolites (reverse T(3); inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T(3) production contributes to a portion of plasma T(3) in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T(3) concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.


Endocrinology | 2010

Type 2 Iodothyronine Deiodinase Levels Are Higher in Slow-Twitch than Fast-Twitch Mouse Skeletal Muscle and Are Increased in Hypothyroidism

Alessandro Marsili; Waile Ramadan Md; John W. Harney; Michelle A. Mulcahey; Luciana A. Castroneves; Iuri Martin Goemann; Simone Magagnin Wajner; Stephen A. Huang; Ann Marie Zavacki; Ana Luiza Maia; Monica Dentice; Domenico Salvatore; J. Enrique Silva; P. Reed Larsen

Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.


Thyroid | 2012

Increased Type 3 Deiodinase Expression in Papillary Thyroid Carcinoma

Mirian Romitti; Simone Magagnin Wajner; Nadja Zennig; Iuri Martin Goemann; Ana Laura Bueno; Erika Laurini de Souza Meyer; Ana Luiza Maia

BACKGROUND Thyroid hormone regulates a wide range of cellular activities, including the balance between cell proliferation and differentiation. The thyroid-hormone-inactivating type 3 deiodinase (DIO3, D3) has been shown to be reactivated in human neoplasias. Here, we evaluated DIO3 expression in human papillary thyroid carcinoma (PTC). METHODS Tumor and surrounding normal thyroid tissue were collected from 26 unselected patients with PTC. Clinical data were retrospectively reviewed in medical records. DIO3 mRNA levels were measured by real-time polymerase chain reaction and D3 activity by paper-descendent chromatography. Studies of DIO3 gene regulation were performed in a human PTC-derived cell line (K1 cells). BRAF(V600E) mutation was identified in DNA from paraffin-embedded tissues by direct sequencing. Immunohistochemistry analyses were performed using a specific human D3 antibody. RESULTS Increased D3 activity was detected in all 26 PTC samples analyzed as compared with adjacent thyroid tissue. The augmentations in D3 activity were paralleled by increased DIO3 mRNA levels (approximately fivefold). In PTC-derived cells, DIO3 transcripts were further upregulated by the transforming growth factor β1 (TGFβ1). Interestingly, preincubation with mitogen-activated protein kinase (MAPK) cascade inhibitors U0126 (ERK pathway) and SB203580 (p38 pathway) decreased DIO3 mRNA levels and blocked the TGFβ1-induced increase in DIO3 transcripts, suggesting that D3 induction might be mediated through the MAPK signaling pathway. Accordingly, DIO3 mRNA and activity levels were significantly higher in BRAF(V600E)-mutated samples (p=0.001). Increased D3 activity was correlated with tumor size (r=0.68, p=0.003), and associated with lymph node (p=0.03) or distant metastasis (p=0.006) at diagnosis. Conversely, decreased levels of the thyroid-hormone-activating type 2 deiodinase (DIO2) gene were observed in PTC, which might contribute to further decreases in intracellular thyroid hormone levels. Increased D3 expression was also observed in follicular thyroid carcinoma but not in medullary or anaplastic thyroid carcinoma samples. CONCLUSIONS These results indicate that the malignant transformation of thyroid follicular cell toward PTC promotes opposite changes in DIO3 and DIO2 expression by pretranscriptional mechanisms. The association between increased levels of D3 activity and advanced disease further supports a role for intracellular triiodothyronine concentration on the thyroid tumor cell proliferation or/and dedifferentiation.


Endocrinology | 2010

Substitution of Serine for Proline in the Active Center of Type 2 Iodothyronine Deiodinase Substantially Alters Its in Vitro Biochemical Properties with Dithiothreitol But Not Its Function in Intact Cells

Iuri Martin Goemann; Balázs Gereben; John W. Harney; Bo Zhu; Ana Luiza Maia; P. Reed Larsen

T(4) must be activated by its monodeiodination to T(3) by type 1 or 2 iodothyronine deiodinase (D1 and D2). Recent studies show that despite an approximately 2000-fold higher Michaelis constant (K(m); T(4)) for D1 than for D2 using dithiothreitol (DTT) as cofactor, D1 expressed in intact cells produces T(3) at free T(4) concentrations many orders of magnitude below its K(m). To understand the factors regulating D1 and D2 catalysis in vivo, we studied a mutant D2 with a proline at position 135 of the active center of D2 replaced with a serine, as found in D1. The P135S D2 enzyme has many D1-like properties, a K(m) (T(4)) in the micromolar range, ping-pong kinetics with DTT, and sensitivity to 6n-propylthiouracil (PTU) in vitro. Unexpectedly, when the P135S D2 was expressed in HEK-293 cells and exposed to 2-200 pm free T(4), the rate of T(4) to T(3) conversion was identical with D2 and conversion was insensitive to PTU. Using glutathione as a cofactor in vitro resulted in a marked decrease in the K(m) (T(4)) (as also occurs for D1), it showed sequential kinetics with T(4) and it was sensitive to PTU but was resistant when HEK-293 cytosol was used as a cofactor. Thus, the in vivo catalytic properties of the P135S D2 mutant are more accurately predicted from in vitro studies with weak reducing agents, such as glutathione or endogenous cofactors, than by those with DTT.


Molecular and Cellular Endocrinology | 2008

Type 2 Iodothyronine Deiodinase Is Highly Expressed in Medullary Thyroid Carcinoma

Erika Laurini de Souza Meyer; Iuri Martin Goemann; José Miguel Dora; Márcia dos Santos Wagner; Ana Luiza Maia

Type II deiodinase (D2) plays a critical role in controlling intracellular T3 concentration and early studies indicated a follicular but not a parafollicular C-cell origin of D2 activity in the thyroid gland. Here, we show that D2 is highly expressed in human medullary thyroid carcinoma (MTC), a tumor that arises from the C-cells. D2 transcripts were detected in all MTC samples obtained from 12 unselected MTC patients and the levels of D2 activity were comparable to those found in surrounding normal follicular tissue (0.41+/-0.10 fmol min mg protein vs. 0.43+/-0.41 fmol min mg protein, P=0.91). Additional analysis in the TT cells, a human MTC cell line, demonstrated that the D2 expression is downregulated by thyroid hormones and enhanced by cAMP analogs and dexamethasone. The thyroid hormone receptor alpha1 and beta isoforms were also detected in all MTC samples and in TT cells, thus suggesting a potential role of T3 locally produced by D2 in this neoplastic tissue.


Journal of Endocrinology | 2011

Type 1 iodothyronine deiodinase in human physiology and disease

Ana Luiza Maia; Iuri Martin Goemann; Erika Laurini de Souza Meyer; Simone Magagnin Wajner

Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T 4 ) molecule, thus producing either the active form triiodothyronine (T 3 ; activation) or inactive metabolites (reverse T 3 ; inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T 3 production contributes to a portion of plasma T 3 in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T 3 concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T(4)) molecule, thus producing either the active form triiodothyronine (T(3); activation) or inactive metabolites (reverse T(3); inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T(3) production contributes to a portion of plasma T(3) in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T(3) concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.


Endocrine-related Cancer | 2017

Role of thyroid hormones in the neoplastic process: an overview

Iuri Martin Goemann; Mirian Romitti; Erika Laurini de Souza Meyer; Simone Magagnin Wajner; Ana Luiza Maia

Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.


Journal of Clinical Investigation | 2011

IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells

Simone Magagnin Wajner; Iuri Martin Goemann; Ana Laura Bueno; P. Reed Larsen; Ana Luiza Maia


Endocrine-related Cancer | 2018

Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias

Iuri Martin Goemann; Vicente Rodrigues Marczyk; Mirian Romitti; Simone Magagnin Wajner; Ana Luiza Maia

Collaboration


Dive into the Iuri Martin Goemann's collaboration.

Top Co-Authors

Avatar

Ana Luiza Maia

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Simone Magagnin Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Erika Laurini de Souza Meyer

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mirian Romitti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

P. Reed Larsen

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

John W. Harney

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

José Miguel Dora

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Márcia dos Santos Wagner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Nadja Zennig

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Balázs Gereben

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge