Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iva Navratilova is active.

Publication


Featured researches published by Iva Navratilova.


PLOS Biology | 2009

ATP and MO25α Regulate the Conformational State of the STRADα Pseudokinase and Activation of the LKB1 Tumour Suppressor

Elton Zeqiraj; Beatrice Maria Filippi; Simon Goldie; Iva Navratilova; Jérôme Boudeau; Maria Deak; Dario R. Alessi; Daan M. F. van Aalten

The conformation of the pseudokinase STRADα, which is regulated by binding to ATP and to the scaffolding protein MO25α, is key to the activiation of the LKB1 tumor suppressor complex.


ACS Medicinal Chemistry Letters | 2010

Fragment screening by surface plasmon resonance.

Iva Navratilova; Andrew L. Hopkins

Fragment-based drug discovery is a validated approach for the discovery of drug candidates. However, the weak affinity of fragment compounds requires highly sensitive biophysical techniques, such as nuclear magnetic resonance (NMR) or X-ray crystallography, to identify hits. Thus the advantages of screening small fragment libraries are partly offset by the high cost of biophysical analyses. Here we present a method for biosensor-based fragment screening using surface plasmon resonance (SPR). In order to reduce the false positive detection rate we present a novel method of data analysis that incorporates multiple referencing with ligand efficiency. By implementing all necessary steps for assay design, data analysis and interpretation, SPR-based fragment screening has potential to eliminate all nonspecific (false positive) binders. Therefore, given the advantages of low protein consumption, rapid assay development and kinetic and thermodynamic validation of hits, SPR can be considered as a primary screening technology for fragment-based drug discovery.


The EMBO Journal | 2011

MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases

Beatrice Maria Filippi; Paola de los Heros; Youcef Mehellou; Iva Navratilova; Robert Gourlay; Maria Deak; Lorna Plater; Rachel Toth; Elton Zeqiraj; Dario R. Alessi

Mouse protein‐25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling development and morphogenesis. Our analyses suggest that MO25α and MO25β associate with these STE20 kinases in a similar manner to STRAD. MO25 isoforms induce approximately 100‐fold activation of SPAK/OSR1 dramatically enhancing their ability to phosphorylate the ion cotransporters NKCC1, NKCC2 and NCC, leading to the identification of several new phosphorylation sites. siRNA‐mediated reduction of expression of MO25 isoforms in mammalian cells inhibited phosphorylation of endogenous NKCC1 at residues phosphorylated by SPAK/OSR1, which is rescued by re‐expression of MO25α. MO25α/β binding to MST3/MST4/YSK1 also stimulated kinase activity three‐ to four‐fold. MO25 has evolved as a key regulator of a group of STE20 kinases and may represent an ancestral mechanism of regulating conformation of pseudokinases and activating catalytically competent protein kinases.


Nature Chemical Biology | 2012

O -GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis

Marianne Schimpl; Xiaowei Zheng; Vladimir S. Borodkin; David E. Blair; Andrew T. Ferenbach; Alexander W. Schüttelkopf; Iva Navratilova; Tonia Aristotelous; Osama Albarbarawi; David A. Robinson; Megan A. Macnaughtan; Daan M. F. van Aalten

Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-GlcNAc transferase using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human O-GlcNAc transferase recognizes the sugar donor and acceptor peptide and employs a novel catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base, as well as an essential lysine. This mechanism appears to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate, and explains the unexpected specificity of a recently reported metabolic O-GlcNAc transferase inhibitor.


ACS Medicinal Chemistry Letters | 2011

Screening for GPCR Ligands Using Surface Plasmon Resonance

Iva Navratilova; Jérémy Besnard; Andrew L. Hopkins

G-protein coupled receptors (GPCRs) are a class of drug targets of primary importance. However, receptor assays are based on measurement of either ligand displacement or downstream functional responses, rather than direct observation of ligand binding. Issues of allosteric modulation, probe dependence, and functional selectivity create challenges in selecting suitable assays formats. Therefore, a method that directly measures GPCR–ligand interactions, independent of binding site, probe, and signaling pathway would be a useful primary and orthogonal screening method. We have developed a GPCR biosensor assay protocol that offers the opportunity for high-throughput label-free screening that directly measures GPCR–ligand interactions. The biosensor-based direct screening method identifies the interaction of both orthosteric and allosteric ligands with solubilized, native GPCRs, in a label-free and cell-free environment, thus overcoming the limitations of indirect and displacement assay methods. We exemplify the method by the discovery of novel ligands for the chemokine receptor, CCR5, that are ligand efficient fragments.


Future Medicinal Chemistry | 2011

Emerging role of surface plasmon resonance in fragment-based drug discovery

Iva Navratilova; Andrew L. Hopkins

Surface plasmon resonance (SPR) offers a method of biophysical fragment screening that is fast, efficient, cost effective and accurate. SPR is increasingly being adopted as a secondary assay to validate fragment hits. Recently, technical advances have resulted in the emergence of SPR as a primary screening methodology for fragment-based drug discovery. Moreover, SPR biosensor assays can be developed for a wide range of proteins, including membrane proteins, such as G-protein-coupled receptors. In this review, we discuss the advantages and limitations of SPR fragment screening including experimental consideration of reducing false positive and false negative rates to a minimum. We discuss how ligand efficiency can be used both as a method to eliminate false positives and to understand which fragments in a library may be a source of false negatives.


ACS Medicinal Chemistry Letters | 2013

Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor

Tonia Aristotelous; Seungkirl Ahn; Arun K. Shukla; Sylwia Gawron; Maria F. Sassano; Alem W. Kahsai; Laura M. Wingler; Xiao Zhu; Xi Ping Huang; Jennifer Riley; Jérémy Besnard; Kevin D. Read; Bryan L. Roth; Ian H. Gilbert; Andrew L. Hopkins; Robert J. Lefkowitz; Iva Navratilova

G-protein coupled receptors (GPCRs) are the primary target class of currently marketed drugs, accounting for about a quarter of all drug targets of approved medicines. However, almost all the screening efforts for novel ligand discovery rely exclusively on cellular systems overexpressing the receptors. An alternative ligand discovery strategy is a fragment-based drug discovery, where low molecular weight compounds, known as fragments, are screened as initial starting points for optimization. However, the screening of fragment libraries usually employs biophysical screening methods, and as such, it has not been routinely applied to membrane proteins. We present here a surface plasmon resonance biosensor approach that enables, cell-free, label-free, fragment screening that directly measures fragment interactions with wild-type GPCRs. We exemplify the method by the discovery of novel, selective, high affinity antagonists of human β2 adrenoceptor.


Amino Acids | 2011

Substrate and Product Analogues as Human O-Glcnac Transferase Inhibitors.

Helge C. Dorfmueller; Vladimir S. Borodkin; David E. Blair; Shalini Pathak; Iva Navratilova; Daan M. F. van Aalten

Protein glycosylation on serine/threonine residues with N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible and abundant post-translational modification. It is thought to regulate many cellular processes and there are examples of interplay between O-GlcNAc and protein phosphorylation. In metazoa, a single, highly conserved and essential gene encodes the O-GlcNAc transferase (OGT) that transfers GlcNAc onto substrate proteins using UDP–GlcNAc as the sugar donor. Specific inhibitors of human OGT would be useful tools to probe the role of this post-translational modification in regulating processes in the living cell. Here, we describe the synthesis of novel UDP–GlcNAc/UDP analogues and evaluate their inhibitory properties and structural binding modes in vitro alongside alloxan, a previously reported weak OGT inhibitor. While the novel analogues are not active on living cells, they inhibit the enzyme in the micromolar range and together with the structural data provide useful templates for further optimisation.


Open Biology | 2013

Structure of a bacterial putative acetyltransferase defines the fold of the human O-GlcNAcase C-terminal domain

Francesco V. Rao; Alexander W. Schüttelkopf; Helge C. Dorfmueller; Andrew T. Ferenbach; Iva Navratilova; Daan M. F. van Aalten

The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent ‘pseudo’-AT.


Journal of Biomolecular Screening | 2012

Biosensor-Based Approach to the Identification of Protein Kinase Ligands with Dual-Site Modes of Action

Iva Navratilova; Graeme Macdonald; Colin Robinson; Samantha J. Hughes; John Paul Mathias; Christopher Phillips; Andrew Simon Cook

The authors have used a surface plasmon resonance (SPR)–based biosensor approach to identify and characterize compounds with a unique binding mode to protein kinases. Biacore was used to characterize hits from an enzymatic high-throughput screen of the Tec family tyrosine kinase, IL2-inducible T cell kinase (ITK). Complex binding kinetics was observed for some compounds, which led to identification of compounds that bound simultaneously at both the adenosine triphosphate (ATP) binding site and a second, allosteric site on ITK. The presence of the second binding site was confirmed by X-ray crystallography. The second site is located in the N-terminal lobe of the protein kinase catalytic domain, adjacent to but distinct from the ATP site. To enable rapid optimization of binding properties, a competition-based Biacore assay has been developed to successfully identify second site noncompetitive binders that have been confirmed by X-ray crystallographic studies. The authors have found that SPR technology is a key method for rapid identification of compounds with dual-site modes of action.

Collaboration


Dive into the Iva Navratilova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge