Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivailo Tournev is active.

Publication


Featured researches published by Ivailo Tournev.


American Journal of Human Genetics | 2004

The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time

Peter A. Underhill; Cengiz Cinnioglu; Manfred Kayser; Bharti Morar; Toomas Kivisild; Rosaria Scozzari; Fulvio Cruciani; Giovanni Destro-Bisol; Gabriella Spedini; Geoffrey K. Chambers; Rene J. Herrera; Kiau Kiun Yong; David Gresham; Ivailo Tournev; Marcus W. Feldman; Luba Kalaydjieva

We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9x10-4 per 25 years, with a standard deviation across loci of 5.7x10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria.


Nature Genetics | 2004

Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy

Joy Irobi; Katrien Van Impe; Pavel Seeman; Albena Jordanova; Ines Dierick; Nathalie Verpoorten; Andrej Michalik; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Krist’l Vennekens; Radim Mazanec; Ivailo Tournev; David Hilton-Jones; Kevin Talbot; Ivo Kremensky; Ludo Van Den Bosch; Wim Robberecht; Joël Vandekerckhove; Christine Van Broeckhoven; Jan Gettemans; Vincent Timmerman

Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein αA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.


Nature Genetics | 2006

Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy

Albena Jordanova; Joy Irobi; Florian P. Thomas; Patrick Van Dijck; Kris Meerschaert; Maarten Dewil; Ines Dierick; An Jacobs; Els De Vriendt; Velina Guergueltcheva; Chitharanjan V Rao; Ivailo Tournev; Francisco de Assis Aquino Gondim; Marc D'Hooghe; Veerle Van Gerwen; Patrick Callaerts; Ludo Van Den Bosch; Jean-Pierre Timmermans; Wim Robberecht; Jan Gettemans; Johan M. Thevelein; Ivo Kremensky; Vincent Timmerman

Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153–156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.


American Journal of Human Genetics | 2001

Origins and Divergence of the Roma (Gypsies)

David Gresham; Bharti Morar; Peter A. Underhill; Giuseppe Passarino; Alice A. Lin; Cheryl Wise; Dora Angelicheva; Francesc Calafell; Peter J. Oefner; Peidong Shen; Ivailo Tournev; Rosario de Pablo; Vaidutis Kuĉinskas; Anna Pérez-Lezaun; Elena Marushiakova; Vesselin Popov; Luba Kalaydjieva

The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.


American Journal of Human Genetics | 2009

Null mutations in LTBP2 cause primary congenital glaucoma

Manir Ali; Martin McKibbin; Adam D. Booth; David A. Parry; Payal Jain; S. Amer Riazuddin; J. Fielding Hejtmancik; Shaheen N. Khan; Sabika Firasat; Mike Shires; David F. Gilmour; Katherine V. Towns; Anna Louise Murphy; Dimitar N. Azmanov; Ivailo Tournev; Sylvia Cherninkova; Hussain Jafri; Yasmin Raashid; Carmel Toomes; Jamie E. Craig; David A. Mackey; Luba Kalaydjieva; Sheikh Riazuddin; Chris F. Inglehearn

Primary congenital glaucoma (PCG) is an autosomal-recessive condition characterized by high intraocular pressure (IOP), usually within the first year of life, which potentially could lead to optic nerve damage, globe enlargement, and permanent loss of vision. To date, PCG has been linked to three loci: 2p21 (GLC3A), for which the responsible gene is CYP1B1, and 1p36 (GLC3B) and 14q24 (GLC3C), for which the genes remain to be identified. Here we report that null mutations in LTBP2 cause PCG in four consanguineous families from Pakistan and in patients of Gypsy ethnicity. LTBP2 maps to chromosome 14q24.3 but is around 1.3 Mb proximal to the documented GLC3C locus. Therefore, it remains to be determined whether LTBP2 is the GLC3C gene or whether a second adjacent gene is also implicated in PCG. LTBP2 is the largest member of the latent transforming growth factor (TGF)-beta binding protein family, which are extracellular matrix proteins with multidomain structure. It has homology to fibrillins and may have roles in cell adhesion and as a structural component of microfibrils. We confirmed localization of LTBP2 in the anterior segment of the eye, at the ciliary body, and particularly the ciliary process. These findings reveal that LTBP2 is essential for normal development of the anterior chamber of the eye, where it may have a structural role in maintaining ciliary muscle tone.


Human Mutation | 2013

A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats

Julie van der Zee; Ilse Gijselinck; Lubina Dillen; Tim Van Langenhove; Jessie Theuns; Sebastiaan Engelborghs; Stéphanie Philtjens; Mathieu Vandenbulcke; Kristel Sleegers; Anne Sieben; Veerle Bäumer; Githa Maes; Ellen Corsmit; Barbara Borroni; Alessandro Padovani; Silvana Archetti; Robert Perneczky; Janine Diehl-Schmid; Alexandre de Mendonça; Gabriel Miltenberger-Miltenyi; Sónia Pereira; José Pimentel; Benedetta Nacmias; Silvia Bagnoli; Sandro Sorbi; Caroline Graff; Huei-Hsin Chiang; Marie Westerlund; Raquel Sánchez-Valle; Albert Lladó

We assessed the geographical distribution of C9orf72 G4C2 expansions in a pan‐European frontotemporal lobar degeneration (FTLD) cohort (n = 1,205), ascertained by the European Early‐Onset Dementia (EOD) consortium. Next, we performed a meta‐analysis of our data and that of other European studies, together 2,668 patients from 15 Western European countries. The frequency of the C9orf72 expansions in Western Europe was 9.98% in overall FTLD, with 18.52% in familial, and 6.26% in sporadic FTLD patients. Outliers were Finland and Sweden with overall frequencies of respectively 29.33% and 20.73%, but also Spain with 25.49%. In contrast, prevalence in Germany was limited to 4.82%. In addition, we studied the role of intermediate repeats (7–24 repeat units), which are strongly correlated with the risk haplotype, on disease and C9orf72 expression. In vitro reporter gene expression studies demonstrated significantly decreased transcriptional activity of C9orf72 with increasing number of normal repeat units, indicating that intermediate repeats might act as predisposing alleles and in favor of the loss‐of‐function disease mechanism. Further, we observed a significantly increased frequency of short indels in the GC‐rich low complexity sequence adjacent to the G4C2 repeat in C9orf72 expansion carriers (P < 0.001) with the most common indel creating one long contiguous imperfect G4C2 repeat, which is likely more prone to replication slippage and pathological expansion.


American Journal of Human Genetics | 2004

Mutation history of the Roma/Gypsies

Bharti Morar; David Gresham; Dora Angelicheva; Ivailo Tournev; Rebecca Gooding; Velina Guergueltcheva; Carolin Schmidt; Angela Abicht; Hanns Lochmüller; Attila Tordai; Lajos Kalmár; Melinda Nagy; Veronika Karcagi; Marc Jeanpierre; Agnes Herczegfalvi; David Beeson; Viswanathan Venkataraman; Kim W. Carter; Jeff Reeve; Rosario de Pablo; Vaidutis Kučinskas; Luba Kalaydjieva

The 8-10 million European Roma/Gypsies are a founder population of common origins that has subsequently split into multiple socially divergent and geographically dispersed Gypsy groups. Unlike other founder populations, whose genealogy has been extensively documented, the demographic history of the Gypsies is not fully understood and, given the lack of written records, has to be inferred from current genetic data. In this study, we have used five disease loci harboring private Gypsy mutations to examine some missing historical parameters and current structure. We analyzed the frequency distribution of the five mutations in 832-1,363 unrelated controls, representing 14 Gypsy populations, and the diversification of chromosomal haplotypes in 501 members of affected families. Sharing of mutations and high carrier rates supported a strong founder effect, and the identity of the congenital myasthenia 1267delG mutation in Gypsy and Indian/Pakistani chromosomes provided the best evidence yet of the Indian origins of the Gypsies. However, dramatic differences in mutation frequencies and haplotype divergence and very limited haplotype sharing pointed to strong internal differentiation and characterized the Gypsies as a founder population comprising multiple subisolates. Using disease haplotype coalescence times at the different loci, we estimated that the entire Gypsy population was founded approximately 32-40 generations ago, with secondary and tertiary founder events occurring approximately 16-25 generations ago. The existence of multiple subisolates, with endogamy maintained to the present day, suggests a general approach to complex disorders in which initial gene mapping could be performed in large families from a single Gypsy group, whereas fine mapping would rely on the informed sampling of the divergent subisolates and searching for the shared genomic region that displays the strongest linkage disequilibrium with the disease.


American Journal of Human Genetics | 2009

Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3.

Jan Senderek; Sean M. Garvey; M. Krieger; Velina Guergueltcheva; Andoni Urtizberea; Andreas Roos; Miriam Elbracht; Claudia Stendel; Ivailo Tournev; Violeta Mihailova; Howard Feit; Jeff Tramonte; Peter Hedera; Kristy Crooks; Carsten Bergmann; Sabine Rudnik-Schöneborn; Klaus Zerres; Hanns Lochmüller; Eric Seboun; Joachim Weis; Jacques S. Beckmann; Michael A. Hauser; Charles E. Jackson

Distal myopathies represent a heterogeneous group of inherited skeletal muscle disorders. One type of adult-onset, progressive autosomal-dominant distal myopathy, frequently associated with dysphagia and dysphonia (vocal cord and pharyngeal weakness with distal myopathy [VCPDM]), has been mapped to chromosome 5q31 in a North American pedigree. Here, we report the identification of a second large VCPDM family of Bulgarian descent and fine mapping of the critical interval. Sequencing of positional candidate genes revealed precisely the same nonconservative S85C missense mutation affecting an interspecies conserved residue in the MATR3 gene in both families. MATR3 is expressed in skeletal muscle and encodes matrin 3, a component of the nuclear matrix, which is a proteinaceous network that extends throughout the nucleus. Different disease related haplotype signatures in the two families provided evidence that two independent mutational events at the same position in MATR3 cause VCPDM. Our data establish proof of principle that the nuclear matrix is crucial for normal skeletal muscle structure and function and put VCPDM on the growing list of monogenic disorders associated with the nuclear proteome.


European Journal of Human Genetics | 2001

Patterns of inter- and intra-group genetic diversity in the Vlax Roma as revealed by Y chromosome and mitochondrial DNA lineages

Luba Kalaydjieva; Francesc Calafell; Mark A. Jobling; Dora Angelicheva; de Knijff P; Zoë H. Rosser; Matthew E. Hurles; Peter A. Underhill; Ivailo Tournev; E Marushiakova; Popov

Previous genetic studies, supported by linguistic and historical data, suggest that the European Roma, comprising a large number of socially divergent endogamous groups, may be a complex conglomerate of founder populations. The boundaries and characteristics of such founder populations and their relationship to the currently existing social stratification of the Roma have not been investigated. This study is an attempt to address the issues of common vs independent origins and the history of population fissioning in three Romani groups that are well defined and strictly endogamous relative to each other. According to linguistic classifications, these groups belong to the Vlax Roma, who account for a large proportion of the European Romani population. The analysis of mtDNA sequence variation has shown that a large proportion of maternal lineages are common to the three groups. The study of a set of Y chromosome markers of different mutability has revealed that over 70% of males belong to a single lineage that appears unique to the Roma and presents with closely related microsatellite haplotypes and MSY1 codes. The study unambiguously points to the common origins of the three Vlax groups and the recent nature of the population fissions, and provides preliminary evidence of limited genetic diversity in this young founder population.


American Journal of Human Genetics | 1999

A founder mutation in the GK1 gene is responsible for galactokinase deficiency in Roma (Gypsies).

Luba Kalaydjieva; Anna Perez-Lezaun; Dora Angelicheva; Suna Onengut; Danielle E. Dye; Nils U. Bosshard; Albena Jordanova; Alexei Savov; Peter Yanakiev; Ivo Kremensky; Brigitta Radeva; Joachim Hallmayer; Arseni Markov; Vanya Nedkova; Ivailo Tournev; Lidia Aneva; Richard Gitzelmann

Galactokinase deficiency is an inborn error in the first step of galactose metabolism. Its major clinical manifestation is the development of cataracts in the first weeks of life. It has also been suggested that carriers of the deficiency are predisposed to presenile cataracts developing at age 20-50 years. Newborn screening data suggest that the gene frequency is very low worldwide but is higher among the Roma in Europe. Since the cloning of the galactokinase gene (GK1) in 1995, only two disease-causing mutations, both confined to single families, have been identified. Here we present the results of a study of six affected Romani families from Bulgaria, where index patients with galactokinase deficiency have been detected by the mass screening. Genetic linkage mapping placed the disease locus on 17q, and haplotype analysis revealed a small conserved region of homozygosity. Using radiation hybrid mapping, we have shown that GK1 is located in this region. The founder Romani mutation identified in this study is a single nucleotide substitution in GK1 resulting in the replacement of the conserved proline residue at amino acid position 28 with threonine (P28T). The P28T carrier rate in this endogamous population is approximately 5%, suggesting that the mutation may be an important cause of early childhood blindness in countries with a sizeable Roma minority.

Collaboration


Dive into the Ivailo Tournev's collaboration.

Top Co-Authors

Avatar

Luba Kalaydjieva

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dora Angelicheva

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Bharti Morar

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Dimitar N. Azmanov

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvia Cherninkova

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David Chandler

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pontzen Thomas

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge