Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan A. Berg is active.

Publication


Featured researches published by Ivan A. Berg.


Science | 2007

A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea

Ivan A. Berg; Daniel Kockelkorn; Wolfgang Buckel; Georg Fuchs

The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl–coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.


Nature Reviews Microbiology | 2010

Autotrophic carbon fixation in archaea

Ivan A. Berg; Daniel Kockelkorn; W. Hugo Ramos-Vera; Rafael F. Say; Jan Zarzycki; Michael Hügler; Birgit E. Alber; Georg Fuchs

The acquisition of cellular carbon from inorganic carbon is a prerequisite for life and marked the transition from the inorganic to the organic world. Recent theories of the origins of life assume that chemoevolution took place in a hot volcanic flow setting through a transition metal-catalysed, autocatalytic carbon fixation cycle. Many archaea live in volcanic habitats under such constraints, in high temperatures with only inorganic substances and often under anoxic conditions. In this Review, we describe the diverse carbon fixation mechanisms that are found in archaea. These reactions differ fundamentally from those of the well-known Calvin cycle, and their distribution mirrors the phylogenetic positions of the archaeal lineages and the needs of the ecological niches that they occupy.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway.

Tobias J. Erb; Ivan A. Berg; Volker Brecht; Michael Müller; Georg Fuchs; Birgit E. Alber

Fifty years ago, Kornberg and Krebs established the glyoxylate cycle as the pathway for the synthesis of cell constituents from C2-units. However, since then, many bacteria have been described that do not contain isocitrate lyase, the key enzyme of this pathway. Here, a pathway termed the ethylmalonyl-CoA pathway operating in such organisms is described. Isotopically labeled acetate and bicarbonate were transformed to ethylmalonyl-CoA by cell extracts of acetate-grown, isocitrate lyase-negative Rhodobacter sphaeroides as determined by NMR spectroscopy. Crotonyl-CoA carboxylase/reductase, catalyzing crotonyl-CoA + CO2 + NADPH → ethylmalonyl-CoA− + NADP+ was identified as the key enzyme of the ethylmalonyl-CoA pathway. The reductive carboxylation of an enoyl-thioester is a unique biochemical reaction, unprecedented in biology. The enzyme from R. sphaeroides was heterologously produced in Escherichia coli and characterized. Crotonyl-CoA carboxylase/reductase (or its gene) can be used as a marker for the presence of the ethylmalonyl-CoA pathway, which functions not only in acetyl-CoA assimilation. In Streptomyces sp., it may also supply precursors (ethylmalonyl-CoA) for antibiotic biosynthesis. For methylotrophic bacteria such as Methylobacterium extorquens, extension of the serine cycle with reactions of the ethylmalonyl-CoA pathway leads to a simplified scheme for isocitrate lyase-independent C1 assimilation.


Applied and Environmental Microbiology | 2011

Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways

Ivan A. Berg

ABSTRACT Autotrophic CO2 fixation represents the most important biosynthetic process in biology. Besides the well-known Calvin-Benson cycle, five other totally different autotrophic mechanisms are known today. This minireview discusses the factors determining their distribution. As will be made clear, the observed diversity reflects the variety of the organisms and the ecological niches existing in nature.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis

Harald Huber; Martin Gallenberger; Ulrike Jahn; Eva Eylert; Ivan A. Berg; Daniel Kockelkorn; Wolfgang Eisenreich; Georg Fuchs

Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO2 acceptor molecule acetyl-CoA is regenerated. Oxaloacetate is reduced to succinyl-CoA by an incomplete reductive citric acid cycle lacking 2-oxoglutarate dehydrogenase or synthase. Succinyl-CoA is reduced to 4-hydroxybutyrate, which is then activated to the CoA thioester. By using the radical enzyme 4-hydroxybutyryl-CoA dehydratase, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA. Finally, β-oxidation of crotonyl-CoA leads to two molecules of acetyl-CoA. Thus, the cyclic pathway forms an extra molecule of acetyl-CoA, with pyruvate synthase and PEP carboxylase as the carboxylating enzymes. The proposal is based on in vitro transformation of 4-hydroxybutyrate, detection of all enzyme activities, and in vivo-labeling experiments using [1-14C]4-hydroxybutyrate, [1,4-13C2], [U-13C4]succinate, or [1-13C]pyruvate as tracers. The pathway is termed the dicarboxylate/4-hydroxybutyrate cycle. It combines anaerobic metabolic modules to a straightforward and efficient CO2 fixation mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation

Martin Könneke; Daniel M. Schubert; Philip C. Brown; Michael Hügler; Sonja Standfest; Thomas Schwander; Lennart Schada von Borzyskowski; Tobias J. Erb; David A. Stahl; Ivan A. Berg

Significance CO2 fixation is the most important biosynthesis process on Earth, enabling autotrophic organisms to synthesize their entire biomass from inorganic carbon at the expense of energy generated by photo- or chemotrophic processes. In the present study we demonstrate an autotrophy pathway that represents the most energy-efficient mechanism for fixing inorganic carbon in the presence of oxygen. This novel variant of the hydroxypropionate/hydroxybutyrate cycle appears to be common in a ubiquitous and abundant group of microorganisms that can thrive in nutrient-limited environments. This discovery offers a biochemical explanation for the remarkable ecological success of the ammonia-oxidizing archaea in extremely nutrient-limited environments typical of most of the open ocean. Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.


Science | 2011

A Methylaspartate Cycle in Haloarchaea

Maria Khomyakova; Özlem Bükmez; Lorenz K. Thomas; Tobias J. Erb; Ivan A. Berg

Salt-loving microbes have patched together an alternative carbon assimilation cycle. Access to novel ecological niches often requires adaptation of metabolic pathways to cope with new environments. For conversion to cellular building blocks, many substrates enter central carbon metabolism via acetyl–coenzyme A (acetyl-CoA). Until now, only two such pathways have been identified: the glyoxylate cycle and the ethylmalonyl-CoA pathway. Prokaryotes in the haloarchaea use a third pathway by which acetyl-CoA is oxidized to glyoxylate via the key intermediate methylaspartate. Glyoxylate condensation with another acetyl-CoA molecule yields malate, the final assimilation product. This cycle combines reactions that originally belonged to different metabolic processes in different groups of prokaryotes, which suggests lateral gene transfer and evolutionary tinkering of acetate assimilation. Moreover, it requires elevated intracellular glutamate concentrations, as well as coupling carbon assimilation with nitrogen metabolism.


Journal of Bacteriology | 2009

Autotrophic Carbon Dioxide Assimilation in Thermoproteales Revisited

W. Hugo Ramos-Vera; Ivan A. Berg; Georg Fuchs

For Crenarchaea, two new autotrophic carbon fixation cycles were recently described. Sulfolobales use the 3-hydroxypropionate/4-hydroxybutyrate cycle, with acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme. Ignicoccus hospitalis (Desulfurococcales) uses the dicarboxylate/4-hydroxybutyrate cycle, with pyruvate synthase and phosphoenolpyruvate carboxylase being responsible for CO(2) fixation. In the two cycles, acetyl-CoA and two inorganic carbons are transformed to succinyl-CoA by different routes, whereas the regeneration of acetyl-CoA from succinyl-CoA proceeds via the same route. Thermoproteales would be an exception to this unifying concept, since for Thermoproteus neutrophilus, the reductive citric acid cycle was proposed as a carbon fixation mechanism. Here, evidence is presented for the operation of the dicarboxylate/4-hydroxybutyrate cycle in this archaeon. All required enzyme activities were detected in large amounts. The key enzymes of the cycle were strongly upregulated under autotrophic growth conditions, indicating their involvement in autotrophic CO(2) fixation. The corresponding genes were identified in the genome. (14)C-labeled 4-hydroxybutyrate was incorporated into the central building blocks in accordance with the key position of this compound in the cycle. Moreover, the results of previous (13)C-labeling studies, which could be reconciled with a reductive citric acid cycle only when some assumptions were made, were perfectly in line with the new proposal. We conclude that the dicarboxylate/4-hydroxybutyrate cycle is operating in CO(2) fixation in the strict anaerobic Thermoproteales as well as in Desulfurococcales.


Microbiology | 2010

Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota.

Ivan A. Berg; Ramos-Vera Wh; Petri A; Harald Huber; Georg Fuchs

Two new autotrophic carbon fixation cycles have been recently described in Crenarchaeota. The 3-hydroxypropionate/4-hydroxybutyrate cycle using acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme has been identified for (micro)aerobic members of the Sulfolobales. The dicarboxylate/4-hydroxybutyrate cycle using oxygen-sensitive pyruvate synthase and phosphoenolpyruvate carboxylase as carboxylating enzymes has been found in members of the anaerobic Desulfurococcales and Thermoproteales. However, Sulfolobales include anaerobic and Desulfurococcales aerobic autotrophic representatives, raising the question of which of the two cycles they use. We studied the mechanisms of autotrophic CO(2) fixation in the strictly anaerobic Stygiolobus azoricus (Sulfolobales) and in the facultatively aerobic Pyrolobus fumarii (Desulfurococcales). The activities of all enzymes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were found in the anaerobic S. azoricus. In contrast, the aerobic or denitrifying P. fumarii possesses all enzyme activities of the dicarboxylate/4-hydroxybutyrate cycle. We conclude that autotrophic Crenarchaeota use one of the two cycles, and that their distribution correlates with the 16S rRNA-based phylogeny of this group, rather than with the aerobic or anaerobic lifestyle.


Microbiology | 2004

An Oligonucleotide Primer System for Amplification of the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Genes of Bacteria of Various Taxonomic Groups

E. M. Spiridonova; Ivan A. Berg; T. V. Kolganova; R. N. Ivanovsky; B. B. Kuznetsov; T. P. Tourova

Based on the analysis of GenBank nucleotide sequences of the cbbL and cbbM genes, coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC), the key enzyme of the Calvin cycle, a primer system was designed that allows fragments of these genes about 800 bp long to be PCR-amplified for various photo- and chemotrophic bacteria. The efficiency of the designed primer system in detection of RuBPC genes was demonstrated in PCR with DNA of taxonomically diverse bacteria possessing RuBPC genes with a known primary structure. Nucleotide sequences of RuBPC gene fragments of bacteria belonging to the genera Acidithiobacillus, Ectothiorhodospira, Magnetospirillum, Methylocapsa, Thioalkalispira, Rhodobacter, and Rhodospirillum were determined to be deposited with GenBank and to be translated into amino acid sequences and subjected to phylogenetic analysis.

Collaboration


Dive into the Ivan A. Berg's collaboration.

Top Co-Authors

Avatar

Georg Fuchs

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. I. Keppen

Moscow State University

View shared research outputs
Top Co-Authors

Avatar

T. P. Tourova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Hügler

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge