Ivan A. Popov
Utah State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan A. Popov.
Journal of Chemical Physics | 2013
Ivan A. Popov; Zachary A. Piazza; Wei-Li Li; Lai-Sheng Wang; Alexander I. Boldyrev
The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24(-) possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moiety is puckered out of plane by 0.9 Å, reminiscent of the six-atom pentagonal caps of the well-known B12 icosahedral unit. The next closest isomer at the ROCCSD(T) level of theory has a tubular double-ring structure. Comparison of the simulated spectra with the experimental data shows that the global minimum quasi-planar B24(-) isomer is the major contributor to the observed photoelectron spectrum, while the tubular isomer has no contribution to the experiment. Chemical bonding analyses reveal that the periphery of the quasi-planar B24 constitutes 15 classical 2c-2e B-B σ-bonds, whereas delocalized σ- and π-bonds are found in the interior of the cluster with one unique 6c-2e π-bond responsible for bonding in the B-centered pentagon. The current work suggests that the 24-atom boron cluster continues to be quasi-2D, albeit the tendency to form filled pentagonal units, characteristic of 3D cage-like structures of bulk boron, is observed.
Journal of the American Chemical Society | 2015
Li-Ming Yang; Vladimir Bačić; Ivan A. Popov; Alexander I. Boldyrev; Thomas Heine; Thomas Frauenheim; Eric Ganz
Two-dimensional (2D) materials with planar hypercoordinate motifs are extremely rare due to the difficulty in stabilizing the planar hypercoordinate configurations in extended systems. Furthermore, such exotic motifs are often unstable. We predict a novel Cu2Si 2D monolayer featuring planar hexacoordinate copper and planar hexacoordinate silicon. This is a global minimum in 2D space which displays reduced dimensionality and rule-breaking chemical bonding. This system has been studied with density functional theory, including molecular dynamics simulations and electronic structure calculations. Bond order analysis and partitioning reveals 4c-2e σ bonds that stabilize the two-dimensional structure. We find that the system is quite stable during short annealing simulations up to 900 K, and predict that it is a nonmagnetic metal. This work opens up a new branch of hypercoordinate two-dimensional materials for study.
Nano Research | 2012
Ivan A. Popov; Konstantin V. Bozhenko; Alexander I. Boldyrev
AbstractWe analyze the chemical bonding in graphene using a fragmental approach, the adaptive natural density partitioning method, electron sharing indices, and nucleus-independent chemical shift indices. We prove that graphene is aromatic, but its aromaticity is different from the aromaticity in benzene, coronene, or circumcoronene. Aromaticity in graphene is local with two π-electrons delocalized over every hexagon ring. We believe that the chemical bonding picture developed for graphene will be helpful for understanding chemical bonding in defects such as point defects, single-, double-, and multiple vacancies, carbon adatoms, foreign adatoms, substitutional impurities, and new materials that are derivatives of graphene.
Nature Chemistry | 2017
Xiao Dong; Artem R. Oganov; Alexander F. Goncharov; Elissaios Stavrou; Sergey S. Lobanov; Gabriele Saleh; Guang Rui Qian; Qiang Zhu; Carlo Gatti; Volker L. Deringer; Richard Dronskowski; Xiang-Feng Zhou; Vitali B. Prakapenka; Zuzana Konôpková; Ivan A. Popov; Alexander I. Boldyrev; Hui-Tian Wang
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.
Nature Communications | 2015
Ivan A. Popov; Tian Jian; Gary V. Lopez; Alexander I. Boldyrev; Lai-Sheng Wang
The electron deficiency and strong bonding capacity of boron have led to a vast variety of molecular structures in chemistry and materials science. Here we report the observation of highly symmetric cobalt-centered boron drum-like structures of CoB16−, characterized by photoelectron spectroscopy and ab initio calculations. The photoelectron spectra display a relatively simple spectral pattern, suggesting a high symmetry structure. Two nearly degenerate isomers with D8d (I) and C4v (II) symmetries are found computationally to compete for the global minimum. These drum-like structures consist of two B8 rings sandwiching a cobalt atom, which has the highest coordination number known heretofore in chemistry. We show that doping of boron clusters with a transition metal atom induces an earlier two-dimensional to three-dimensional structural transition. The CoB16− cluster is tested as a building block in a triple-decker sandwich, suggesting a promising route for its realization in the solid state.
Journal of Physical Chemistry A | 2014
Ivan A. Popov; Wei-Li Li; Zachary A. Piazza; Alexander I. Boldyrev; Lai-Sheng Wang
Small boron clusters are known to be planar, and may be used as ligands to form novel coordination complexes with transition metals. Here we report a combined photoelectron spectroscopy and ab initio study of CoB12(-) and RhB12(-). Photoelectron spectra of the two doped-B12 clusters show similar spectral patterns, suggesting they have similar structures. Global minimum searches reveal that both CoB12(-) and RhB12(-) possess half-sandwich-type structures with the quasi-planar B12 moiety coordinating to the metal atom. The B12 ligand is found to have similar structure as the bare B12 cluster with C3v symmetry. Structures with Co or Rh inserted into the quasi-planar boron framework are found to be much higher in energy. Chemical bonding analyses of the two B12 half sandwiches reveal two sets of σ bonds on the boron unit: nine classical two-center-two-electron (2c-2e) σ bonds on the periphery of the B12 unit and four 3c-2e σ bonds within the boron unit. Both σ and π bonds are found between the metal and the B12 ligand: three M-B single σ bonds and one delocalized 4c-2e π bond. The exposed metal sites in these complexes can be further coordinated by other ligands or become reaction centers as model catalysts.
Journal of Chemical Physics | 2014
Zachary A. Piazza; Ivan A. Popov; Wei Li Li; Rhitankar Pal; Xiao Cheng Zeng; Alexander I. Boldyrev; Lai-Sheng Wang
Photoelectron spectroscopy and ab initio calculations are used to investigate the structures and chemical bonding of the B25(-) cluster. Global minimum searches reveal a dense potential energy landscape with 13 quasi-planar structures within 10 kcal/mol at the CCSD(T)/6-311+G(d) level of theory. Three quasi-planar isomers (I, II, and III) are lowest in energy and nearly degenerate at the CCSD(T) level of theory, with II and III being 0.8 and 0.9 kcal/mol higher, respectively, whereas at two density functional levels of theory isomer III is the lowest in energy (8.4 kcal/mol more stable than I at PBE0/6-311+G(2df) level). Comparison with experimental photoelectron spectroscopic data shows isomer II to be the major contributor while isomers I and III cannot be ruled out as minor contributors to the observed spectrum. Theoretical analyses reveal similar chemical bonding in I and II, both involving peripheral 2c-2e B-B σ-bonding and delocalized interior σ- and π-bonding. Isomer III has an interesting elongated ribbon-like structure with a π-bonding pattern analogous to those of dibenzopentalene. The high density of low-lying isomers indicates the complexity of the medium-sized boron clusters; the method dependency of predicting relative energies of the low-lying structures for B25(-) suggests the importance of comparison with experiment in determining the global minima of boron clusters at this size range. The appearance of many low-lying quasi-planar structures containing a hexagonal hole in B25(-) suggests the importance of this structural feature in maintaining planarity of larger boron clusters.
Angewandte Chemie | 2014
Alexander S. Ivanov; Ivan A. Popov; Alexander I. Boldyrev; Viktor V. Zhdankin
IX (X=O, N, C) bonding was analyzed in the related hypervalent iodine compounds based on the adaptive natural density partitioning (AdNDP) approach. The results confirm the presence of a I→X σ dative bond, as opposed to the widely used IX notation. A clear formulation of the electronic structure of these hypervalent iodine compounds would be useful in establishing reaction mechanisms and electronic structures in bioinorganic problems of general applicability.
Physical Review B | 2016
Xiang-Feng Zhou; Artem R. Oganov; Zhenhai Wang; Ivan A. Popov; Alexander I. Boldyrev; Hui-Tian Wang
We predict a two-dimensional (2D) antiferromagnetic (AFM) boron (designated as M-boron) by using ab initio evolutionary methodology. M-boron is entirely composed of B20 clusters in a hexagonal arrangement. Most strikingly, the highest valence band of M-boron is isolated, strongly localized, and quite flat, which induces spin polarization on each cap of the B20 cluster. This flat band originates from the unpaired electrons of the capping atoms, and is responsible for magnetism. M-boron is thermodynamically metastable and is the first cluster-based 2D magnetic material in the elemental boron system.
Journal of Chemical Physics | 2016
Tian Jian; Wan-Lu Li; Ivan A. Popov; Gary V. Lopez; Xin Chen; Alexander I. Boldyrev; Jun Li; Lai-Sheng Wang
We report the observation of a manganese-centered tubular boron cluster (MnB16 (-)), which is characterized by photoelectron spectroscopy and ab initio calculations. The relatively simple pattern of the photoelectron spectrum indicates the cluster to be highly symmetric. Ab initio calculations show that MnB16 (-) has a Mn-centered tubular structure with C4v symmetry due to first-order Jahn-Teller effect, while neutral MnB16 reduces to C2v symmetry due to second-order Jahn-Teller effect. In MnB16 (-), two unpaired electrons are observed, one on the Mn 3dz(2) orbital and another on the B16 tube, making it an unusual biradical. Strong covalent bonding is found between the Mn 3d orbitals and the B16 tube, which helps to stabilize the tubular structure. The current result suggests that there may exist a whole class of metal-stabilized tubular boron clusters. These metal-doped boron clusters provide a new bonding modality for transition metals, as well as a new avenue to design boron-based nanomaterials.