Ivan Arisi
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan Arisi.
BioMed Research International | 2009
Christian Barbato; Ivan Arisi; Marcos Emilio dos Santos Frizzo; Rossella Brandi; Letizia Da Sacco; Andrea Masotti
All microRNA (miRNA) target—finder algorithms return lists of candidate target genes. How valid is that output in a biological setting? Transcriptome analysis has proven to be a useful approach to determine mRNA targets. Time course mRNA microarray experiments may reliably identify downregulated genes in response to overexpression of specific miRNA. The approach may miss some miRNA targets that are principally downregulated at the protein level. However, the high-throughput capacity of the assay makes it an effective tool to rapidly identify a large number of promising miRNA targets. Finally, loss and gain of function miRNA genetics have the clear potential of being critical in evaluating the biological relevance of thousands of target genes predicted by bioinformatic studies and to test the degree to which miRNA-mediated regulation of any “validated” target functionally matters to the animal or plant.
Journal of Cellular Physiology | 2011
Manuela Natoli; Bruno D. Leoni; Igea D'Agnano; Mara D'Onofrio; Rossella Brandi; Ivan Arisi; Flavia Zucco; Armando Felsani
The human intestinal Caco‐2 cell line has been extensively used as a model of the intestinal barrier. However, it is widely reported in literature that culture‐related conditions, as well as the different Caco‐2 cell lines utilized in different laboratories, often lead to problems of reproducibility making difficult to compare results. We developed a new cell‐maintenance protocol in which Caco‐2 cells were subcultured at 50% of confluence instead of 80% of confluence, as usually suggested. Using this new protocol, Caco‐2 cells retained a higher proliferation potential resulting in a cell population, which, on reaching confluence, was able to differentiate almost synchronously, forming a more homogeneous and polarized cell monolayer, as compared to that obtained using a high cell growing density. This comparison has been done by analyzing the gene expression and the structural characteristics of the 21‐days differentiated monolayers by microarrays hybridization and by confocal microscopy. We then investigated if these differences could also modify the effects of toxicants on 21‐days‐differentiated cells. We analyzed the 2 h‐acute toxicity of CuCl2 in terms of actin depolymerization and metallothionein 2A (MT2A) and heat shock protein 70 (HSPA1A) genes induction. Copper treatment resulted in different levels of actin depolymerization and gene expression induction in relationship with culture protocol, the low‐density growing cells showing a more homogeneous and stronger response. Our results suggest that cell growing density could influence a number of morphological and physiological properties of differentiated Caco‐2 cells and these effects must be taken in account when these cells are used as intestinal model. J. Cell. Physiol. 226: 1531–1543, 2011.
Embo Molecular Medicine | 2013
Loredana Fiorentino; Michele Cavalera; Stefano Menini; Valentina Marchetti; Maria Mavilio; Marta Fabrizi; Francesca Conserva; Viviana Casagrande; Rossella Menghini; Paola Pontrelli; Ivan Arisi; Mara D'Onofrio; Davide Lauro; Rama Khokha; Domenico Accili; Giuseppe Pugliese; Loreto Gesualdo; Renato Lauro; Massimo Federici
ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3−/− mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3−/− mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re‐expression of Timp3 in Timp3−/− mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased.
The Journal of Neuroscience | 2010
Laura Lagostena; Marcelo Rosato-Siri; Mara D'Onofrio; Rossella Brandi; Ivan Arisi; Simona Capsoni; Jessica Franzot; Antonino Cattaneo; Enrico Cherubini
GABA, the main inhibitory transmitter in adulthood, early in postnatal development exerts a depolarizing and excitatory action. This effect, which results from a high intracellular chloride concentration ([Cl−]i), promotes neuronal growth and synaptogenesis. During the second postnatal week, the developmental regulated expression of the cation-chloride cotransporter KCC2 accounts for the shift of GABA from the depolarizing to the hyperpolarizing direction. Changes in chloride homeostasis associated with high [Cl−]i have been found in several neurological disorders, including temporal lobe epilepsy. Here, we report that, in adult transgenic mice engineered to express recombinant neutralizing anti-nerve growth factor antibodies (AD11 mice), GABA became depolarizing and excitatory. AD11 mice exhibit a severe deficit of the cholinergic function associated with an age-dependent progressive neurodegenerative pathology resembling that observed in Alzheimer patients. Thus, in hippocampal slices obtained from 6-month-old AD11 (but not wild-type) mice, the GABAA agonist isoguvacine significantly increased the firing of CA1 principal cells and, at the network level, the frequency of multiunit activity recorded with extracellular electrodes. In addition, in AD11 mice, the reversal of GABAA-mediated postsynaptic currents and of GABA-evoked single-channel currents were positive with respect to the resting membrane potential as estimated in perforated patch and cell attached recordings, respectively. Real-time quantitative reverse transcription-PCR and immunocytochemical experiments revealed a reduced expression of mRNA encoding for Kcc2 and of the respective protein. This novel mechanism may represent a homeostatic response that counterbalances within the hippocampal network the Alzheimer-like neurodegenerative pathology found in AD11 mice.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Erik Keimpema; Giuseppe Tortoriello; Alán Alpár; Simona Capsoni; Ivan Arisi; Daniela Calvigioni; Sherry Shu Jung Hu; Antonino Cattaneo; Patrick Doherty; Ken Mackie; Tibor Harkany
Endocannabinoid, particularly 2-arachidonoyl glycerol (2-AG), signaling has recently emerged as a molecular determinant of neuronal migration and synapse formation during cortical development. However, the cell type specificity and molecular regulation of spatially and temporally confined morphogenic 2-AG signals remain unexplored. Here, we demonstrate that genetic and pharmacological manipulation of CB1 cannabinoid receptors permanently alters cholinergic projection neuron identity and hippocampal innervation. We show that nerve growth factor (NGF), implicated in the morphogenesis and survival of cholinergic projection neurons, dose-dependently and coordinately regulates the molecular machinery for 2-AG signaling via tropomyosine kinase A receptors in vitro. In doing so, NGF limits the sorting of monoacylglycerol lipase (MGL), rate limiting 2-AG bioavailability, to proximal neurites, allowing cell-autonomous 2-AG signaling at CB1 cannabinoid receptors to persist at atypical locations to induce superfluous neurite extension. We find that NGF controls MGL degradation in vitro and in vivo and identify the E3 ubiquitin ligase activity of breast cancer type 1 susceptibility protein (BRCA1) as a candidate facilitating MGL’s elimination from motile neurite segments, including growth cones. BRCA1 inactivation by cisplatin or genetically can rescue and reposition MGL, arresting NGF-induced growth responses. These data indicate that NGF can orchestrate endocannabinoid signaling to promote cholinergic differentiation and implicate BRCA1 in determining neuronal morphology.
PLOS ONE | 2013
Vincent C. K. Cheung; Caroline DeBoer; Elizabeth Hanson; Marta Tunesi; Mara D'Onofrio; Ivan Arisi; Rossella Brandi; Antonino Cattaneo; Ki Ann Goosens
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Annalisa Manca; Simona Capsoni; Anna Di Luzio; Domenico Vignone; Francesca Malerba; Francesca Paoletti; Rossella Brandi; Ivan Arisi; Antonino Cattaneo; Rita Levi-Montalcini
Nerve growth factor (NGF) was discovered because of its neurotrophic actions on sympathetic and sensory neurons in the developing chicken embryo. NGF was subsequently found to influence and regulate the function of many neuronal and non neuronal cells in adult organisms. Little is known, however, about the possible actions of NGF during early embryonic stages. However, mRNAs encoding for NGF and its receptors TrkA and p75NTR are expressed at very early stages of avian embryo development, before the nervous system is formed. The question, therefore, arises as to what might be the functions of NGF in early chicken embryo development, before its well-established actions on the developing sympathetic and sensory neurons. To investigate possible roles of NGF in the earliest stages of development, stage HH 11–12 chicken embryos were injected with an anti-NGF antibody (mAb αD11) that binds mature NGF with high affinity. Treatment with anti-NGF, but not with a control antibody, led to a dose-dependent inversion of the direction of axial rotation. This effect of altered rotation after anti NGF injection was associated with an increased cell death in somites. Concurrently, a microarray mRNA expression analysis revealed that NGF neutralization affects the expression of genes linked to the regulation of development or cell proliferation. These results reveal a role for NGF in early chicken embryo development and, in particular, in the regulation of somite survival and axial rotation, a crucial developmental process linked to left–right asymmetry specification.
PLOS ONE | 2012
Giovanna Maresca; Manuela Natoli; Marta Nardella; Ivan Arisi; Daniela Trisciuoglio; Marianna Desideri; Rossella Brandi; Simona D’Aguanno; Maria Rita Nicotra; Mara D’Onofrio; Andrea Urbani; Pier Giorgio Natali; Donatella Del Bufalo; Armando Felsani; Igea D’Agnano
Background Neuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. Methodology/Principal Findings Knock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. Conclusions/Significance We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype.
Neurobiology of Aging | 2011
Mara D’Onofrio; Ivan Arisi; Rossella Brandi; Alessandra Di Mambro; Armando Felsani; Simona Capsoni; Antonino Cattaneo
We characterized the gene expression profile of brain regions at an early stage of the Alzheimers like neurodegeneration in the anti-NGF AD11 model. Total RNA was extracted from hippocampus, cortex and basal forebrain of postnatal day 30 (P30) and postnatal day 90 (P90) mice and expression profiles were studied by microarray analysis, followed by qRT-PCR validation of 243 significant candidates. Wide changes in gene expression profiles occur already at P30. As expected, cholinergic system and neurotrophins related genes expression were altered. Interestingly, the most significantly affected clusters of mRNAs are linked to inflammation and immune response, as well as to Wnt signaling. mRNAs encoding for different complement factors show a large differential expression. This is noteworthy, since these complement cascade proteins are involved in CNS synapse elimination, during normal brain developing and in neurodegenerative diseases. This gene expression pattern highlights that an early event in AD11 neurodegeneration is represented, together with neurotrophic deficits and synaptic remodeling, by an inflammatory response and an unbalance in the immunotrophic state of the brain. These might be key events in the pathogenesis and development of AD.
Diabetes | 2011
Simonetta Lisi; Olimpia Gamucci; Teresa Vottari; Gaia Scabia; Marcella Funicello; Matilde Marchi; Giulia Galli; Ivan Arisi; Rossella Brandi; Mara D’Onofrio; Aldo Pinchera; Ferruccio Santini; Margherita Maffei
OBJECTIVE Haptoglobin (Hp) is upregulated in both inflammation and obesity. The low chronic inflammatory state, caused by massive adipose tissue macrophage (ATM) infiltration found in obesity, and low adiponectin have been implicated in the development of insulin resistance and hepatosteatosis. The aim of this work was to investigate whether and how Hp interferes with the onset of obesity-associated complications. RESEARCH DESIGN AND METHODS Hp-null (Hp−/−) and wild-type (WT) mice were metabolically profiled under chow-food diet (CFD) and high-fat diet (HFD) feeding by assessing physical parameters, glucose tolerance, insulin sensitivity, insulin response to glucose load, liver triglyceride content, plasma levels of leptin, insulin, glucose, and adiponectin. ATM content was evaluated by using immunohistochemistry (anti-F4/80 antibody). Adiponectin expression was measured in Hp-treated, cultured 3T3-L1 and human adipocytes. RESULTS No genotype-related difference was found in CFD animals. HFD-Hp−/− mice revealed significantly higher glucose tolerance, insulin sensitivity, glucose-stimulated insulin secretion, and adiponectin expression and reduced hepatomegaly/steatosis compared with HFD-WT mice. White adipose tissue (WAT) of HFD-Hp−/− mice showed higher activation of insulin signaling cascade, lower ATM, and higher adiponectin expression. Hp was able to inhibit adiponectin expression in cultured adipocytes. CONCLUSIONS We demonstrated that in the absence of Hp, obesity-associated insulin resistance and hepatosteatosis are attenuated, which is associated with reduced ATM content, increased plasma adiponectin, and higher WAT insulin sensitivity.