Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Bazarov is active.

Publication


Featured researches published by Ivan Bazarov.


Journal of Synchrotron Radiation | 2004

Diffractive imaging of nonperiodic materials with future coherent X-ray sources

Qun Shen; Ivan Bazarov; Pierre Thibault

Coherent diffractive imaging using a coherent X-ray source promises to be a useful microscopic method for imaging noncrystalline objects at high spatial resolution. In this article a simple method to estimate the coherently scattered signal as a function of resolution is presented, and it is shown that the required X-ray flux or dose scales as the inverse third power of resolution for a specimen of constant volume and density. A simulated case study using the proposed energy-recovery linac source is also presented, which confirms the estimated flux requirement.


Review of Scientific Instruments | 2002

Energy recovery linacs as synchrotron radiation sources (invited)

Sol M. Gruner; D. H. Bilderback; Ivan Bazarov; Ken Finkelstein; Geoffrey Krafft; L. Merminga; H. Padamsee; Qun Shen; Charles Sinclair; M. Tigner

Practically all synchrotron x-ray sources to data are based on the use of storage rings to produce the high current electron (or positron) beams needed for synchrotron radiation (SR). The ultimate limitations on the quality of the electron beam, which are directly reflected in many of the most important characteristics of the SR beams, arise from the physics of equilibrium processes fundamental to the operation of storage rings. It is possible to produce electron beams with superior characteristics for SR via photoinjected electron sources and high-energy linacs; however, the energy consumption of such machines is prohibitive. This limitation can be overcome by the use of an energy recovery linac (ERL), which involves configuring the electron-beam path to use the same superconducting linac as a decelerator of the electron beam after SR production, thereby recovering the beam energy for acceleration of new electrons. ERLs have the potential to produce SR beams with brilliance, coherence, time structure, and source size and shape which are superior to even the best third-generation storage ring sources, while maintaining flexible machine operation and competitive costs. Here, we describe a project to produce a hard x-ray ERL SR source at Cornell University, with emphasis on the characteristics, promise, and challenges of such an ERL machine.


Journal of Applied Physics | 2008

Thermal emittance and response time measurements of negative electron affinity photocathodes

Ivan Bazarov; Bruce Dunham; Yulin Li; Xianghong Liu; Dimitre G. Ouzounov; Charles K. Sinclair; Fay Hannon; Tsukasa Miyajima

The thermal emittance and temporal response of a photocathode set an upper limit on the maximum achievable electron beam brightness from a photoemission electron source, or photoinjector. We present measurements of these parameters over a broad range of laser wavelength for two different negative electron affinity (NEA) photocathodes. The thermal emittance of NEA GaAs and GaAsP has been measured by two techniques—a measurement of the beam size downstream from a solenoid, whose strength was varied, and a double slit transmission measurement—for different laser spot sizes and shapes. The effect of space charge on the beam spot size allows a good estimation of the photoemission response time from these cathodes. Both cathodes show a subpicosecond response for laser wavelengths shorter than 520 nm.


Applied Physics Letters | 2013

Record high-average current from a high-brightness photoinjector

Bruce Dunham; John Barley; Adam Bartnik; Ivan Bazarov; Luca Cultrera; John Dobbins; Georg Hoffstaetter; Brent Johnson; R. Kaplan; Siddharth Karkare; V. O. Kostroun; Yulin Li; Matthias Liepe; Xianghong Liu; Florian Loehl; Jared Maxson; Peter Quigley; John Reilly; D. Rice; Daniel Sabol; Eric Smith; Karl W. Smolenski; M. Tigner; Vadim Vesherevich; Dwight Widger; Zhi Zhao

High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4–5 MeV.


Journal of Applied Physics | 2013

Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes

Siddharth Karkare; Dimitre Dimitrov; W. J. Schaff; Luca Cultrera; Adam Bartnik; Xianghong Liu; Eric Sawyer; Teresa Esposito; Ivan Bazarov

High quantum yield, low transverse energy spread, and prompt response time make GaAs activated to negative electron affinity an ideal candidate for a photocathode in high brightness photoinjectors. Even after decades of investigation, the exact mechanism of electron emission from GaAs is not well understood. Here, photoemission from such photocathodes is modeled using detailed Monte Carlo electron transport simulations. Simulations show a quantitative agreement with the experimental results for quantum efficiency, energy distributions of emitted electrons, and response time without the assumption of any ad hoc parameters. This agreement between simulation and experiment sheds light on the mechanism of electron emission and provides an opportunity to design novel semiconductor photocathodes with optimized performance.


Applied Optics | 2007

Efficient temporal shaping of ultrashort pulses with birefringent crystals

Shian Zhou; Dimitre G. Ouzounov; Heng Li; Ivan Bazarov; Bruce Dunham; Charles K. Sinclair; Frank W. Wise

A new and simple technique for temporal shaping of femtosecond and picosecond pulses with high efficiency is demonstrated. The pulse is divided into numerous pulses by a designed birefringent-crystal set. These divided pulses produce various shapes.


Physical Review Special Topics-accelerators and Beams | 2004

Beam-breakup instability theory for energy recovery linacs

Georg Hoffstaetter; Ivan Bazarov

Here we will derive the general theory of the beam-breakup instability in recirculating linear accelerators, in which the bunches do not have to be at the same RF phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs) where bunches are recirculated at a decelerating phase of the RF wave and for other recirculator arrangements where different RF phases are of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable cases, which show: (a) Why different higher order modes (HOM) in one cavity do not couple so that the most dangerous modes can be considered individually. (b) How different HOM frequencies have to be in order to consider them separately. (c) That no optics can cause the HOMs of two cavities to cancel. (d) How an optics can avoid the addition of the instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit deviations produced by cavity misalignments has also been introduced. It is shown that the BBU instability always occurs before the orbit excursion becomes very large.


Applied Physics Letters | 2011

Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes

Siddharth Karkare; Ivan Bazarov

High quantum yield, low transverse energy spread, and prompt response time make GaAs activated to negative electron affinity an ideal candidate for a photocathode in high brightness photoinjectors. Even after decades of investigation, the exact mechanism of electron emission from GaAs is not well understood. We show that a nanoscale surface roughness can affect the transverse electron spread from GaAs by nearly an order of magnitude and explain the seemingly controversial experimental results obtained so far. This model can also explain the measured dependence of transverse energy spread on the wavelength of incident light.


Applied Physics Letters | 2011

Thermal emittance measurements of a cesium potassium antimonide photocathode

Ivan Bazarov; Luca Cultrera; Adam Bartnik; Bruce Dunham; Siddharth Karkare; Yulin Li; Xianghong Liu; Jared Maxson; William Roussel

Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56±0.03 mm mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.


Proceedings of the 2003 Particle Accelerator Conference | 2003

The Cornell ERL prototype project

Georg Hoffstaetter; Buz Barstow; Ivan Bazarov; S. Belomestnykh; D. H. Bilderback; Sol M. Gruner; Matthias Liepe; H. Padamsee; Valery Shemelin; Charles K. Sinclair; Richard Talman; M. Tigner; Vadim Veshcherevich; G.A. Krafft; L. Merminga

Synchrotron light sources based on Energy Recovery Linacs (ERLs) show promise to deliver X-ray beams with both brilliance and X-ray pulse duration far superior to the values that can be achieved with storage ring technology. Cornell University, in collaboration with Jefferson Laboratory, has proposed the construction of a prototype ERL. This 100MeV, 100mA CW superconducting electron accelerator will be used to study and resolve the many accelerator physics and technology issues of this type of machine. These studies are essential before ERLs can be confidently proposed for large-scale applications such as synchrotron light sources. Key issues include the generation of high average current, high brightness electron beams; acceleration and transport of these beams while preserving their brightness; adequate damping of higher order modes (HOMs) to assure beam stability; removal of large amounts of HOM power from the cryogenic environment; stable RF control of cavities operating at very high external Q; reduction of beam losses to very low levels; and the development of precision non-intercepting diagnostics to allow beam setup, control and characterization. Our prototype design allows us to address these and other issues over a broad range of parameter space. This design, along with recent progress on understanding these issues, will be presented.

Collaboration


Dive into the Ivan Bazarov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge