Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Borzenets is active.

Publication


Featured researches published by Ivan Borzenets.


Nature Physics | 2015

Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene

Yuya Shimazaki; Michihisa Yamamoto; Ivan Borzenets; Kenji Watanabe; Takashi Taniguchi; S. Tarucha

Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature. The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents1. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical2,3,4,5, magnetic6,7,8,9 and electrical control of the valley degree of freedom10,11,12. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.


Science | 2016

Supercurrent in the quantum Hall regime.

Francois Amet; Chung-Ting Ke; Ivan Borzenets; Jiyingmei Wang; K. Watanabe; Takashi Taniguchi; R. S. Deacon; Michihisa Yamamoto; Yuriy Bomze; S. Tarucha; Gleb Finkelstein

Making a graphene super-edge In superconductors, the electrical current is carried by “Cooper pairs,” formed out of an electron and a hole. This supercurrent will happily cross a thin barrier between two superconductors. But what if a strong magnetic field were applied at the barrier, forcing charge carriers to travel only along the edge of the barrier? Amet et al. explored this regime in a sample consisting of two superconducting electrodes and a graphene barrier under magnetic fields of up to 2 tesla (see the Perspective by Mason). Their transport measurements were consistent with a model in which the supercurrent was carried by the edge states in graphene. Science, this issue p. 966; see also p. 891 Transport measurements show that quantum Hall edge states carry the supercurrent in a graphene Josephson junction. A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.


PLOS ONE | 2013

Intracellular Neural Recording with Pure Carbon Nanotube Probes

Inho Yoon; Kosuke Hamaguchi; Ivan Borzenets; Gleb Finkelstein; Richard Mooney; Bruce Randall Donald

The computational complexity of the brain depends in part on a neuron’s capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.


Physical Review Letters | 2011

Phase diffusion in graphene-based Josephson junctions.

Ivan Borzenets; Ulas Coskun; S. J. Jones; Gleb Finkelstein

We report on graphene-based Josephson junctions with contacts made from lead. The high transition temperature of this superconductor allows us to observe the supercurrent branch at temperatures up to ∼2 K, at which point we can detect a small, but nonzero, resistance. We attribute this resistance to the phase diffusion mechanism, which has not been yet identified in graphene. By measuring the resistance as a function of temperature and gate voltage, we can further characterize the nature of the electromagnetic environment and dissipation in our samples.


Nature | 2012

Quantum phase transition in a resonant level coupled to interacting leads

Henok Mebrahtu; Ivan Borzenets; Dong E. Liu; Huaixiu Zheng; Yuriy Bomze; Alex I. Smirnov; Harold U. Baranger; Gleb Finkelstein

A Luttinger liquid is an interacting one-dimensional electronic system, quite distinct from the ‘conventional’ Fermi liquids formed by interacting electrons in two and three dimensions. Some of the most striking properties of Luttinger liquids are revealed in the process of electron tunnelling. For example, as a function of the applied bias voltage or temperature, the tunnelling current exhibits a non-trivial power-law suppression. (There is no such suppression in a conventional Fermi liquid.) Here, using a carbon nanotube connected to resistive leads, we create a system that emulates tunnelling in a Luttinger liquid, by controlling the interaction of the tunnelling electron with its environment. We further replace a single tunnelling barrier with a double-barrier, resonant-level structure and investigate resonant tunnelling between Luttinger liquids. At low temperatures, we observe perfect transparency of the resonant level embedded in the interacting environment, and the width of the resonance tends to zero. We argue that this behaviour results from many-body physics of interacting electrons, and signals the presence of a quantum phase transition. Given that many parameters, including the interaction strength, can be precisely controlled in our samples, this is an attractive model system for studying quantum critical phenomena in general, with wide-reaching implications for understanding quantum phase transitions in more complex systems, such as cold atoms and strongly correlated bulk materials.


Nature Physics | 2013

Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment

Henok Mebrahtu; Ivan Borzenets; Huaixiu Zheng; Yuriy Bomze; Alex I. Smirnov; Serge Florens; Harold U. Baranger; Gleb Finkelstein

A quantum critical point associated with a carbon nanotube quantum dot that is in contact with dissipative leads exhibits striking non-Fermi-liquid properties and anomalous scaling. The dissipative environment enables the comparison of the system under thermal- and non-equilibrium conditions.


Physical Review Letters | 2016

Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes

Ivan Borzenets; Francois Amet; Chung-Ting Ke; Anne Draelos; Ming-Tso Wei; Andrew Seredinski; K. Watanabe; T. Taniguchi; Yuriy Bomze; Michihisa Yamamoto; S. Tarucha; Gleb Finkelstein

We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junctions transversal modes.


Physical Review Letters | 2013

Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures

Ivan Borzenets; Ulas Coskun; Henok Mebrahtu; Yu. V. Bomze; Alex I. Smirnov; Gleb Finkelstein

We examine the nature of the transitions between the normal and superconducting branches in superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (normal to superconducting) transitions to electron overheating. In particular, we demonstrate that the retrapping current corresponds to the critical current at an elevated temperature, where the heating is caused by the retrapping current itself. The superconducting gap in the leads suppresses the hot electron outflow, allowing us to further study electron thermalization by phonons at low temperatures (T≲1 K). The relationship between the applied power and the electron temperature was found to be P∝T3, which we argue is consistent with cooling due to electron-phonon interactions.


Journal of Applied Physics | 2012

Ultra-sharp metal and nanotube-based probes for applications in scanning microscopy and neural recording

Ivan Borzenets; Inho Yoon; M. M. Prior; Bruce Randall Donald; Richard Mooney; Gleb Finkelstein

This paper discusses several methods for manufacturing ultra-sharp probes, with applications geared toward, but not limited to, scanning microscopy (STM, AFM) and intra-cellular recordings of neural signals. We present recipes for making tungsten, platinum/iridium alloy, and nanotube fibril tips. Electrical isolation methods using Parylene-C or PMMA are described.


Journal of the Physical Society of Japan | 2015

Valley Hall Effect in Two-Dimensional Hexagonal Lattices

Michihisa Yamamoto; Yuya Shimazaki; Ivan Borzenets; S. Tarucha

Valley is a quantum number defined for energetically degenerate but nonequivalent structures in energy bands of a crystalline material. Recent discoveries of two-dimensional (2D) layered materials have shed light on the potential use of this degree of freedom for information carriers because the valley can now be potentially manipulated in integrated 2D architectures. The valleys separated by a long distance in a momentum space are robust against external disturbance and the flow of the valley, the valley current, is nondissipative because it carries no net electronic current. Among the various 2D valley materials, graphene has by far the highest crystal quality, leading to an extremely long valley relaxation length in the bulk. In this review, we first describe the theoretical background of the valley Hall effect, which converts an electric field into a valley current. We then describe the first observation of the valley Hall effect in monolayer MoS2. Finally, we describe experiments on the generation an...

Collaboration


Dive into the Ivan Borzenets's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Taniguchi

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Watanabe

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge