Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Carnimeo is active.

Publication


Featured researches published by Ivan Carnimeo.


Journal of Chemical Physics | 2013

Anharmonic theoretical simulations of infrared spectra of halogenated organic compounds

Ivan Carnimeo; Cristina Puzzarini; Nicola Tasinato; Paolo Stoppa; Andrea Pietropolli Charmet; Malgorzata Biczysko; Chiara Cappelli; Vincenzo Barone

The recent implementation of the computation of infrared (IR) intensities beyond the double-harmonic approximation [J. Bloino and V. Barone, J. Chem. Phys. 136, 124108 (2012)] paved the route to routine calculations of infrared spectra for a wide set of molecular systems. Halogenated organic compounds represent an interesting class of molecules, from both an atmospheric and computational point of view, due to the peculiar chemical features related to the halogen atoms. In this work, we simulate the IR spectra of eight halogenated molecules (CH2F2, CHBrF2, CH2DBr, CF3Br, CH2CHF, CF2CFCl, cis-CHFCHBr, cis-CHFCHI), using two common hybrid and double-hybrid density functionals in conjunction with both double- and triple-ζ quality basis sets (SNSD and cc-pVTZ) as well as employing the coupled-cluster theory with basis sets of at least triple-ζ quality. Finally, we compare our results with available experimental spectra, with the aim of checking the accuracy and the performances of the computational approaches.


Journal of Chemical Theory and Computation | 2011

Time-Dependent Density Functional Tight Binding: New Formulation and Benchmark of Excited States

Fabio Trani; Giovanni Scalmani; Guishan Zheng; Ivan Carnimeo; Michael J. Frisch; Vincenzo Barone

A new formulation of time-dependent density functional tight binding (TD-DFTB) is reported in this paper. It is derived from the application of the linear response theory to the ground state DFTB Hamiltonian, without the introduction of additional parameters for the description of the excited states. The method is validated for several sets of organic compounds, against the best theoretical estimates from the literature, density functional theory, semiempirical methods, and experimental data. The comparison shows that TD-DFTB gives reliable results both for singlet and triplet excitation energies. In addition, the application of TD-DFTB to open-shell systems shows promising results.


Journal of Chemical Physics | 2013

An integrated experimental and quantum-chemical investigation on the vibrational spectra of chlorofluoromethane.

Andrea Pietropolli Charmet; Paolo Stoppa; Nicola Tasinato; Santi Giorgianni; Vincenzo Barone; Malgorzata Biczysko; Julien Bloino; Chiara Cappelli; Ivan Carnimeo; Cristina Puzzarini

The vibrational analysis of the gas-phase infrared spectra of chlorofluoromethane (CH2ClF, HCFC-31) was carried out in the range 200-6200 cm(-1). The assignment of the absorption features in terms of fundamental, overtone, combination, and hot bands was performed on the medium-resolution (up to 0.2 cm(-1)) Fourier transform infrared spectra. From the absorption cross section spectra accurate values of the integrated band intensities were derived and the global warming potential of this compound was estimated, thus obtaining values of 323, 83, and 42 on a 20-, 100-, and 500-year horizon, respectively. The set of spectroscopic parameters here presented provides the basic data to model the atmospheric behavior of this greenhouse gas. In addition, the obtained vibrational properties were used to benchmark the predictions of state-of-the-art quantum-chemical computational strategies. Extrapolated complete basis set limit values for the equilibrium geometry and harmonic force field were obtained at the coupled-cluster singles and doubles level of theory augmented by a perturbative treatment of triple excitations, CCSD(T), in conjunction with a hierarchical series of correlation-consistent basis sets (cc-pVnZ, with n = T, Q, and 5), taking also into account the core-valence correlation effects and the corrections due to diffuse (aug) functions. To obtain the cubic and quartic semi-diagonal force constants, calculations employing second-order Møller-Plesset perturbation (MP2) theory, the double-hybrid density functional B2PLYP as well as CCSD(T) were performed. For all anharmonic force fields the performances of two different perturbative approaches in computing the vibrational energy levels (i.e., the generalized second order vibrational treatment, GVPT2, and the recently proposed hybrid degeneracy corrected model, HDCPT2) were evaluated and the obtained results allowed us to validate the spectroscopic predictions yielded by the HDCPT2 approach. The predictions of the deperturbed second-order perturbation approach, DVPT2, applied to the computation of infrared intensities beyond the double-harmonic approximation were compared to the accurate experimental values here determined. Anharmonic DFT and MP2 corrections to CCSD(T) intensities led to a very good agreement with the absorption cross section measurements over the whole spectral range here analysed.


Journal of Physical Chemistry A | 2015

Toward feasible and comprehensive computational protocol for simulation of the spectroscopic properties of large molecular systems: the anharmonic infrared spectrum of uracil in the solid state by the reduced dimensionality/hybrid VPT2 approach.

Teresa Fornaro; Ivan Carnimeo; Malgorzata Biczysko

Feasible and comprehensive computational protocols for simulating the spectroscopic properties of large and complex molecular systems are very sought after. Indeed, due to the great variety of intra- and intermolecular interactions that may take place, the interpretation of experimental data becomes more and more difficult as the system under study increases in size or is placed in a complex environment, such as condensed phases. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes, with increasing complexity toward condensed phases and monolayers of biomolecules on solid supports. We have resorted to fully anharmonic quantum mechanical computations within the generalized second-order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective B3LYP-D3 method, in conjunction with basis sets of double-ζ plus polarization quality. Such an approach has been validated in a previous work ( Phys. Chem. Chem. Phys. 2014 , 16 , 10112 - 10128 ) for simulating the IR spectra of the monomers of nucleobases and some of their dimers. In the present contribution we have extended such computational protocol to simulate spectroscopic properties of a molecular solid, namely polycrystalline uracil. First we have selected a realistic molecular model for representing the spectroscopic properties of uracil in the solid state, the uracil heptamer, and then we have computed the relative anharmonic frequencies combining less demanding approaches such as the hybrid B3LYP-D3/DFTBA one, in which the harmonic frequencies are computed at a higher level of theory (B3LYP-D3/N07D) whereas the anharmonic shifts are evaluated at a lower level of theory (DFTBA), and the reduced dimensionality VPT2 (RD-VPT2) approach, where only selected vibrational modes are computed anharmonically along with the couplings with other modes. The good agreement between the theoretical results and the experimental findings allowed us to extend the interpretation of experimental data. Our results indicate that hybrid and reduced dimensionality models pave a way for the definition of system-tailored computational protocols able to provide more and more accurate results for very large molecular systems, such as molecular solids and molecules adsorbed on solid supports.


Journal of Physical Chemistry A | 2015

The Electronic Circular Dichroism of Nicotine in Aqueous Solution: A Test Case for Continuum and Mixed Explicit-Continuum Solvation Approaches

Franco Egidi; Rosario Russo; Ivan Carnimeo; Alessandro D’Urso; Giordano Mancini; Chiara Cappelli

In this paper, we extend an integrated QM/MM/polarizable continuum model (PCM) method, which combines a fluctuating charge (FQ) approach to the MM polarization with the PCM, to describe electronic circular dichroism (ECD) spectra of systems in aqueous solution. The main features of the approach are presented, and then applications to the UV and ECD spectra of neutral (S)-nicotine in aqueous solution are reported. The performance of the QM/FQ/PCM is compared with that of the PCM against newly measured UV ECD spectra, which are in agreement with previous findings. The inclusion of specific solvation effects via the QM/FQ/PCM method leads to an improvement in the calculated spectra compared to the experimental findings, though the pure PCM results are still qualitatively correct and are a useful tool for the characterization of the states.


Journal of Computational Chemistry | 2015

Analytical gradients for MP2, double hybrid functionals, and TD‐DFT with polarizable embedding described by fluctuating charges

Ivan Carnimeo; Chiara Cappelli; Vincenzo Barone

A polarizable quantum mechanics (QM)/ molecular mechanics (MM) approach recently developed for Hartree–Fock (HF) and Kohn–Sham (KS) methods has been extended to energies and analytical gradients for MP2, double hybrid functionals, and TD‐DFT models, thus allowing the computation of equilibrium structures for excited electronic states together with more accurate results for ground electronic states. After a detailed presentation of the theoretical background and of some implementation details, a number of test cases are analyzed to show that the polarizable embedding model based on fluctuating charges (FQ) is remarkably more accurate than the corresponding electronic embedding based on a fixed charge (FX) description. In particular, a set of electronegativities and hardnesses has been optimized for interactions between QM and FQ regions together with new repulsion–dispersion parameters. After validation of both the numerical implementation and of the new parameters, absorption electronic spectra have been computed for representative model systems including vibronic effects. The results show remarkable agreement with full QM computations and significant improvement with respect to the corresponding FX results. The last part of the article provides some hints about computation of solvatochromic effects on absorption spectra in aqueous solution as a function of the number of FQ water molecules and on the use of FX external shells to improve the convergence of the results.


Optical Materials Express | 2015

Optical rotatory dispersion of methyloxirane in aqueous solution: assessing the performance of density functional theory in combination with a fully polarizable QM/MM/PCM approach

Franco Egidi; Ivan Carnimeo; Chiara Cappelli

We report a study on the performance of a recently developed fully polarizable QM/MM/PCM approach based on Fluctuating Charges (FQ) combined with 11 different Density Functionals for the description of the Optical Rotation at different wavelengths of (R)-Methyloxirane in aqueous solution. The results are compared with those obtained for the isolated system and for the solvated one as described by the Polarizable Continuum Model. In all cases, a comparison with experimental data is also shown. The results show that the effect of the solvent is much more significant than the effect of the density functional.


Journal of Physical Chemistry A | 2017

Accurate Vibrational–Rotational Parameters and Infrared Intensities of 1-Bromo-1-fluoroethene: A Joint Experimental Analysis and Ab Initio Study

Andrea Pietropolli Charmet; Paolo Stoppa; Santi Giorgianni; Julien Bloino; Nicola Tasinato; Ivan Carnimeo; Malgorzata Biczysko; Cristina Puzzarini

The medium-resolution gas-phase infrared (IR) spectra of 1-bromo-1-fluoroethene (BrFC═CH2, 1,1-C2H2BrF) were investigated in the range 300-6500 cm-1, and the vibrational analysis led to the assignment of all fundamentals as well as many overtone and combination bands up to three quanta, thus giving an accurate description of its vibrational structure. Integrated band intensity data were determined with high precision from the measurements of their corresponding absorption cross sections. The vibrational analysis was supported by high-level ab initio investigations. CCSD(T) computations accounting for extrapolation to the complete basis set and core correlation effects were employed to accurately determine the molecular structure and harmonic force field. The latter was then coupled to B2PLYP and MP2 computations in order to account for mechanical and electrical anharmonicities. Second-order perturbative vibrational theory was then applied to the thus obtained hybrid force fields to support the experimental assignment of the IR spectra.


Journal of Computational Chemistry | 2017

Electronic absorption spectra of pyridine and nicotine in aqueous solution with a combined molecular dynamics and polarizable QM/MM approach

Marco Pagliai; Giordano Mancini; Ivan Carnimeo; Nicola De Mitri; Vincenzo Barone

The electronic absorption spectra of pyridine and nicotine in aqueous solution have been computed using a multistep approach. The computational protocol consists in studying the solute solvation with accurate molecular dynamics simulations, characterizing the hydrogen bond interactions, and calculating electronic transitions for a series of configurations extracted from the molecular dynamics trajectories with a polarizable QM/MM scheme based on the fluctuating charge model. Molecular dynamics simulations and electronic transition calculations have been performed on both pyridine and nicotine. Furthermore, the contributions of solute vibrational effect on electronic absorption spectra have been taken into account in the so called vertical gradient approximation.


Physical Chemistry Chemical Physics | 2014

Ultrafast resonance energy transfer in the umbelliferone–alizarin bichromophore

Andrea Lapini; Pierangelo Fabbrizzi; Matteo Piccardo; Mariangela Di Donato; Luisa Lascialfari; Paolo Foggi; Stefano Cicchi; Malgorzata Biczysko; Ivan Carnimeo; Fabrizio Santoro; Chiara Cappelli; Roberto Righini

In this work we present the synthesis, time-resolved spectroscopic characterization and computational analysis of a bichromophore composed of two very well-known naturally occurring dyes: 7-hydroxycoumarin (umbelliferone) and 1,2-dihydroxyanthraquinone (alizarin). The umbelliferone donor (Dn) and alizarin acceptor (Ac) moieties are linked to a triazole ring viaσ bonds, providing a flexible structure. By measuring the fluorescence quantum yields and the ultrafast transient absorption spectra we demonstrate the high efficiency (∼85%) and the fast nature (∼1.5 ps) of the energy transfer in this compound. Quantum chemical calculations, within the density functional theory (DFT) approach, are used to characterize the electronic structure of the bichromophore (Bi) in the ground and excited states. We simulate the absorption and fluorescence spectra using the TD-DFT methods and the vertical gradient approach (VG), and include the solvent effects by adopting the conductor-like polarizable continuum model (CPCM). The calculated electronic structure suggests the occurrence of weak interactions between the electron densities of Dn and Ac in the excited state, indicating that the Förster-type transfer is the appropriate model for describing the energy transfer in this system. The average distance between Dn and Ac moieties calculated from the conformational analysis (12 Å) is in very good agreement with the value estimated from the Förster equation (∼11 Å). At the same time, the calculated rate constant for energy transfer, averaged over multiple conformations of the system (3.6 ps), is in reasonable agreement with the experimental value (1.6 ps) estimated by transient absorption spectroscopy. The agreement between experimental results and computational data leads us to conclude that the energy transfer in Bi is well described by the Förster mechanism.

Collaboration


Dive into the Ivan Carnimeo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Barone

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Bloino

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Pietropolli Charmet

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

Nicola Tasinato

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

Paolo Stoppa

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

Santi Giorgianni

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

Giordano Mancini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge