Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iván Dotú is active.

Publication


Featured researches published by Iván Dotú.


Science | 2014

Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration

Ryuta Ishimura; Gabor Nagy; Iván Dotú; Huihao Zhou; Xiang-Lei Yang; Paul Schimmel; Satoru Senju; Yasuharu Nishimura; Jeffrey H. Chuang; Susan L. Ackerman

Problems making proteins kills nerve cells Neurodegeneration is associated with a variety of different diseases, but its cellular roots are often obscure. Ishimura et al. find that mutant mice whose brain cells start to die rapidly soon after birth have lost the function of two vital cellular components (see the Perspective by Darnell). The first is a protein that releases stalled ribosomes stuck on messenger RNA (mRNA); the second is a transfer RNA (tRNA), which reads the code for arginine in the mRNA. This tRNA is expressed predominantly in the central nervous system. The lack of the tRNA leads to increased ribosomal stalling at arginine codons, which, when left uncorrected, blocks protein synthesis and proves fatal. Science, this issue p. 455; see also p. 378 Mutations in a transfer RNA expressed in the nervous system stall ribosomes and can cause cell death if ribosome recycling fails. [Also see Perspective by Darnell] In higher eukaryotes, transfer RNAs (tRNAs) with the same anticodon are encoded by multiple nuclear genes, and little is known about how mutations in these genes affect translation and cellular homeostasis. Similarly, the surveillance systems that respond to such defects in higher eukaryotes are not clear. Here, we discover that loss of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, in mice with a mutation in a tRNA gene that is specifically expressed in the central nervous system causes ribosome stalling and widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor but also unmask the disease potential of mutations in nuclear-encoded tRNA genes.


PLOS ONE | 2012

Integrating chemical footprinting data into RNA secondary structure prediction.

Kourosh Zarringhalam; Michelle M. Meyer; Iván Dotú; Jeffrey H. Chuang; Peter Clote

Chemical and enzymatic footprinting experiments, such as shape (selective 2′-hydroxyl acylation analyzed by primer extension), yield important information about RNA secondary structure. Indeed, since the -hydroxyl is reactive at flexible (loop) regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently, low error rates in secondary structure prediction have been reported for three RNAs of moderate size, by including base stacking pseudo-energy terms derived from shape data into the computation of minimum free energy secondary structure. Here, we describe a novel method, RNAsc (RNA soft constraints), which includes pseudo-energy terms for each nucleotide position, rather than only for base stacking positions. We prove that RNAsc is self-consistent, in the sense that the nucleotide-specific probabilities of being unpaired in the low energy Boltzmann ensemble always become more closely correlated with the input shape data after application of RNAsc. From this mathematical perspective, the secondary structure predicted by RNAsc should be ‘correct’, in as much as the shape data is ‘correct’. We benchmark RNAsc against the previously mentioned method for eight RNAs, for which both shape data and native structures are known, to find the same accuracy in 7 out of 8 cases, and an improvement of 25% in one case. Furthermore, we present what appears to be the first direct comparison of shape data and in-line probing data, by comparing yeast asp-tRNA shape data from the literature with data from in-line probing experiments we have recently performed. With respect to several criteria, we find that shape data appear to be more robust than in-line probing data, at least in the case of asp-tRNA.


Nucleic Acids Research | 2010

Computing folding pathways between RNA secondary structures

Iván Dotú; William Andrew Lorenz; Pascal Van Hentenryck; Peter Clote

Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.


Constraints - An International Journal | 2007

Local Search-based Hybrid Algorithms for Finding Golomb Rulers

Carlos Cotta; Iván Dotú; Antonio J. Fernández; Pascal Van Hentenryck

The Golomb ruler problem is a very hard combinatorial optimization problem that has been tackled with many different approaches, such as constraint programming (CP), local search (LS), and evolutionary algorithms (EAs), among other techniques. This paper describes several local search-based hybrid algorithms to find optimal or near-optimal Golomb rulers. These algorithms are based on both stochastic methods and systematic techniques. More specifically, the algorithms combine ideas from greedy randomized adaptive search procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after the observation of the previous one. With these algorithms we are capable of solving large rulers with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16 marks. In addition, the paper also provides an empirical study of the fitness landscape of the problem with the aim of shedding some light about the question of what makes the Golomb ruler problem hard for certain classes of algorithm.


principles and practice of constraint programming | 2003

Redundant modeling for The QuasiGroup Completion Problem

Iván Dotú; Alvaro del Val; Manuel Cebrián

The Quasigroup Completion Problem (QCP) is a very challenging benchmark among combinatorial problems, and the focus of much recent interest in the area of constraint programming. [5] reports that QCPs of order 40 could not be solved by pure constraint programming approaches, but could sometimes be solved by hybrid approaches combining constraint programming with mixed integer programming techniques from operations research. In this paper, we show that the pure constraint satisfaction approach can solve many problems of order 45 in the transition phase, which corresponds to the peak of difficulty. Our solution combines a number of known ideas -the use of redundant modeling [3] with primal and dual models of the problem connected by channeling constraints [13] - with some novel aspects, as well as a new and very effective value ordering heuristic.


integration of ai and or techniques in constraint programming | 2005

Scheduling social golfers locally

Iván Dotú; Pascal Van Hentenryck

The scheduling of social golfers has attracted significant attention in recent years because of its highly symmetrical and combinatorial nature. In particular, it has become one of the standard benchmarks for symmetry breaking in constraint programming. This paper presents a very effective, local search, algorithm for scheduling social golfers. The algorithm find the first known solutions to 11 instances and matches, or improves, state-of-the-art results from constraint programming on all but 3 instances. Moreover, most instances of the social golfers are solved within a couple of seconds. Interestingly, the algorithm does not incorporate any symmetry-breaking scheme and illustrates the nice complementarity between constraint programming and local search on this scheduling application.


principles and practice of constraint programming | 2008

Protein Structure Prediction with Large Neighborhood Constraint Programming Search

Iván Dotú; Manuel Cebrián; Pascal Van Hentenryck; Peter Clote

Protein structure predictions is regarded as a highly challenging problem both for the biology and for the computational communities. Many approaches have been developed in the recent years, moving to increasingly complex lattice models or even off-lattice models. This paper presents a Large Neighborhood Search (LNS) to find the native state for the Hydrophobic-Polar (HP) model on the Face Centered Cubic (FCC) lattice or, in other words, a self- avoiding walk on the FCC lattice having a maximum number of H-H contacts. The algorithm starts with a tabu-search algorithm, whose solution is then improved by a combination of constraint programming and LNS. This hybrid algorithm improves earlier approaches in the literature over several well-known instances and demonstrates the potential of constraint-programming approaches for ab initiomethods.


congress on evolutionary computation | 2005

A simple hybrid evolutionary algorithm for finding Golomb rulers

Iván Dotú; P. Van Hentenryck

Finding Golomb rulers is an extremely challenging optimization problem (with many practical applications) that has been approached by a variety of search methods in recent years. This paper presents a hybrid evolutionary algorithm to find near-optimal Golomb rulers in reasonable time. The algorithm, which is conceptual simple and uses a natural modeling, focuses on feasibility, finding near-optimal rulers indirectly. It significantly outperforms earlier (hybrid) evolutionary algorithms and compares favorably with hybridizations of local search and constraint programming. In particular, the algorithm quickly finds optimal rulers with up to 11 marks and isolates optimal rulers with up to 14 marks in reasonable time. It also finds near-optimal rulers for up to 16 marks quickly.


parallel problem solving from nature | 2006

A memetic approach to golomb rulers

Carlos Cotta; Iván Dotú; Antonio J. Fernández; Pascal Van Hentenryck

Finding Golomb rulers is an extremely challenging optimization problem with many practical applications. This problem has been approached by a variety of search methods in recent years. We consider in this work a hybrid evolutionary algorithm that incorporates ideas from greedy randomized adaptive search procedures (GRASP), tabu-based local search methods (TS) and scatter search (SS). In particular, GRASP and TS are embedded into a SS algorithm to serve as initialization and restarting methods for the population and as improvement technique respectively. The resulting memetic algorithm significantly outperforms earlier approaches (including other hybrid EAs, as well as hybridizations of local search and constraint programming), finding optimal rulers where the mentioned techniques failed.


Scientific Reports | 2016

Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

Javier Fernandez-Chamorro; Gloria Lozano; Juan Antonio Garcia-Martin; Jorge Ramajo; Iván Dotú; Peter Clote; Encarnación Martínez-Salas

The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

Collaboration


Dive into the Iván Dotú's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Cebrián

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alvaro del Val

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge