Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Dotu is active.

Publication


Featured researches published by Ivan Dotu.


Journal of Bioinformatics and Computational Biology | 2013

RNAiFOLD: A CONSTRAINT PROGRAMMING ALGORITHM FOR RNA INVERSE FOLDING AND MOLECULAR DESIGN

Juan Antonio Garcia-Martin; Peter Clote; Ivan Dotu

Synthetic biology is a rapidly emerging discipline with long-term ramifications that range from single-molecule detection within cells to the creation of synthetic genomes and novel life forms. Truly phenomenal results have been obtained by pioneering groups--for instance, the combinatorial synthesis of genetic networks, genome synthesis using BioBricks, and hybridization chain reaction (HCR), in which stable DNA monomers assemble only upon exposure to a target DNA fragment, biomolecular self-assembly pathways, etc. Such work strongly suggests that nanotechnology and synthetic biology together seem poised to constitute the most transformative development of the 21st century. In this paper, we present a Constraint Programming (CP) approach to solve the RNA inverse folding problem. Given a target RNA secondary structure, we determine an RNA sequence which folds into the target structure; i.e. whose minimum free energy structure is the target structure. Our approach represents a step forward in RNA design--we produce the first complete RNA inverse folding approach which allows for the specification of a wide range of design constraints. We also introduce a Large Neighborhood Search approach which allows us to tackle larger instances at the cost of losing completeness, while retaining the advantages of meeting design constraints (motif, GC-content, etc.). Results demonstrate that our software, RNAiFold, performs as well or better than all state-of-the-art approaches; nevertheless, our approach is unique in terms of completeness, flexibility, and the support of various design constraints. The algorithms presented in this paper are publicly available via the interactive webserver http://bioinformatics.bc.edu/clotelab/RNAiFold; additionally, the source code can be downloaded from that site.


Nucleic Acids Research | 2014

Complete RNA inverse folding: computational design of functional hammerhead ribozymes

Ivan Dotu; Juan Antonio Garcia-Martin; Betty L. Slinger; Vinodh Mechery; Michelle M. Meyer; Peter Clote

Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/.


Nucleic Acids Research | 2015

RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules

Juan Antonio Garcia-Martin; Ivan Dotu; Peter Clote

Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules. Availability: the web server, source code and linux binaries are publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0.


research in computational molecular biology | 2013

Abstract: using the fast fourier transform to accelerate the computational search for RNA conformational switches

Evan Senter; Saad I. Sheikh; Ivan Dotu; Yann Ponty; Peter Clote

We describe the broad outline of a new thermodynamics-based algorithm, FFTbor, that uses the fast Fourier transform to perform polynomial interpolation to compute the Boltzmann probability that secondary structures differ by k base pairs from an arbitrary reference structure of a given RNA sequence. The algorithm, which runs in quartic time O(n4) and quadratic space O(n2), is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. The full paper appears in PLoS ONE (2012) 19 Dec 2012. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.


eLife | 2016

Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation

Ryuta Ishimura; Gabor Nagy; Ivan Dotu; Jeffrey H. Chuang; Susan L. Ackerman

Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNAArgUCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress. DOI: http://dx.doi.org/10.7554/eLife.14295.001


RNA Biology | 2013

Using RNA inverse folding to identify IRES-like structural subdomains

Ivan Dotu; Gloria Lozano; Peter Clote; Encarnación Martínez-Salas

Internal ribosome entry site (IRES) elements govern protein synthesis of mRNAs that bypass cap-dependent translation inhibition under stress conditions. Picornavirus IRES are cis-acting elements, organized in modular domains that recruit the ribosome to internal mRNA sites. The aim of this study was to retrieve short RNA sequences with the capacity to adopt RNA folding patterns conserved with IRES structural subdomains, likely corresponding to RNA modules. We have applied a new program, RNAiFold, an inverse folding algorithm that determines all sequences whose minimum free energy structure is identical to that of the structural domains of interest. Sequences differing by more than 1 nt were clustered. Then, BLASTing one randomly chosen sequence from each cluster of the RNAiFold output, we retrieved viral and cellular sequences among output hits. As a proof of principle, we present the data corresponding to a coding region of Drosophila melanogaster TAF6, a transcription factor-associated protein that contains a structural motif within its coding region potentially folding into an IRES-like subdomain. This RNA region shows a biased codon usage, as predicted from structural constraints at the RNA level, it harbors conserved IRES structural motifs in loops, and interestingly, it has the capacity to confer internal initiation of translation in tissue culture cells.


PLOS Computational Biology | 2015

Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis.

Rodrigo Cilla; Vinodh Mechery; Beatriz Hernandez de Madrid; Steven J. Del Signore; Ivan Dotu; Victor Hatini

Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT)


Genetics | 2016

Genetic Architectures of Quantitative Variation in RNA Editing Pathways

Tongjun Gu; Daniel M. Gatti; Anuj Srivastava; Elizabeth Snyder; Narayanan Raghupathy; Petr Simecek; Karen L. Svenson; Ivan Dotu; Jeffrey H. Chuang; Mark P. Keller; Alan D. Attie; Robert E. Braun; Gary A. Churchill

RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.


Nucleic Acids Research | 2013

RNAiFold: a web server for RNA inverse folding and molecular design

Juan Antonio Garcia-Martin; Peter Clote; Ivan Dotu

Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.


Genome Research | 2017

A novel translational control mechanism involving RNA structures within coding sequences

Jennifer Jungfleisch; Danny D. Nedialkova; Ivan Dotu; Katherine E. Sloan; Neus Martínez-Bosch; Lukas Brüning; Emanuele Raineri; Pilar Navarro; Markus T. Bohnsack; Sebastian A. Leidel; Juana Díez

The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.

Collaboration


Dive into the Ivan Dotu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gloria Lozano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Fernandez-Chamorro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge