Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Garcia-Bassets is active.

Publication


Featured researches published by Ivan Garcia-Bassets.


Science | 2006

A Topoisomerase IIß-Mediated dsDNA Break Required for Regulated Transcription

Bong-Gun Ju; Victoria V. Lunyak; Valentina Perissi; Ivan Garcia-Bassets; David W. Rose; Christopher K. Glass; Michael G. Rosenfeld

Multiple enzymatic activities are required for transcriptional initiation. The enzyme DNA topoisomerase II associates with gene promoter regions and can generate breaks in double-stranded DNA (dsDNA). Therefore, it is of interest to know whether this enzyme is critical for regulated gene activation. We report that the signal-dependent activation of gene transcription by nuclear receptors and other classes of DNA binding transcription factors, including activating protein 1, requires DNA topoisomerase IIβ-dependent, transient, site-specific dsDNA break formation. Subsequent to the break, poly(adenosine diphosphate–ribose) polymerase–1 enzymatic activity is induced, which is required for a nucleosome-specific histone H1–high-mobility group B exchange event and for local changes of chromatin architecture. Our data mechanistically link DNA topoisomerase IIβ–dependent dsDNA breaks and the components of the DNA damage and repair machinery in regulated gene transcription.


Nature | 2011

Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA

Dong Wang; Ivan Garcia-Bassets; Christopher Benner; Wenbo Li; Xue Su; Yiming Zhou; Jinsong Qiu; Wen Liu; Minna U. Kaikkonen; Kenneth A. Ohgi; Christopher K. Glass; Michael G. Rosenfeld; Xiang-Dong Fu

Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer–promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.


Nature | 2007

Opposing LSD1 complexes function in developmental gene activation and repression programmes

Jianxun Wang; Kathleen M. Scully; Ling Cai; Jie Zhang; Gratien G. Prefontaine; Anna Krones; Kenneth A. Ohgi; Ping Zhu; Ivan Garcia-Bassets; Forrest C. Liu; Havilah Taylor; Jean Lozach; Friederike L. Jayes; Kenneth S. Korach; Christopher K. Glass; Xiang-Dong Fu; Michael G. Rosenfeld

Precise control of transcriptional programmes underlying metazoan development is modulated by enzymatically active co-regulatory complexes, coupled with epigenetic strategies. One thing that remains unclear is how specific members of histone modification enzyme families, such as histone methyltransferases and demethylases, are used in vivo to simultaneously orchestrate distinct developmental gene activation and repression programmes. Here, we report that the histone lysine demethylase, LSD1—a component of the CoREST-CtBP co-repressor complex—is required for late cell-lineage determination and differentiation during pituitary organogenesis. LSD1 seems to act primarily on target gene activation programmes, as well as in gene repression programmes, on the basis of recruitment of distinct LSD1-containing co-activator or co-repressor complexes. LSD1-dependent gene repression programmes can be extended late in development with the induced expression of ZEB1, a Krüppel-like repressor that can act as a molecular beacon for recruitment of the LSD1-containing CoREST-CtBP co-repressor complex, causing repression of an additional cohort of genes, such as Gh, which previously required LSD1 for activation. These findings suggest that temporal patterns of expression of specific components of LSD1 complexes modulate gene regulatory programmes in many mammalian organs.


Cell | 2007

Histone Methylation-Dependent Mechanisms Impose Ligand Dependency for Gene Activation by Nuclear Receptors

Ivan Garcia-Bassets; Young-Soo Kwon; Francesca Telese; Gratien G. Prefontaine; Kasey R. Hutt; Christine S. Cheng; Bong-Gun Ju; Kenneth A. Ohgi; Jianxun Wang; Laure Escoubet-Lozach; David W. Rose; Christopher K. Glass; Xiang-Dong Fu; Michael G. Rosenfeld

Nuclear receptors undergo ligand-dependent conformational changes that are required for corepressor-coactivator exchange, but whether there is an actual requirement for specific epigenetic landmarks to impose ligand dependency for gene activation remains unknown. Here we report an unexpected and general strategy that is based on the requirement for specific cohorts of inhibitory histone methyltransferases (HMTs) to impose gene-specific gatekeeper functions that prevent unliganded nuclear receptors and other classes of regulated transcription factors from binding to their target gene promoters and causing constitutive gene activation in the absence of stimulating signals. This strategy, based at least in part on an HMT-dependent inhibitory histone code, imposes a requirement for specific histone demethylases, including LSD1, to permit ligand- and signal-dependent activation of regulated gene expression. These events link an inhibitory methylation component of the histone code to a broadly used strategy that circumvents pathological constitutive gene induction by physiologically regulated transcription factors.


Nature | 2010

PHF8 Mediates Histone H4 Lysine 20 Demethylation Events Involved in Cell Cycle Progression

Wen Liu; Bogdan Tanasa; Oksana V. Tyurina; Tian Yuan Zhou; Reto Gassmann; Wei Ting Liu; Kenneth A. Ohgi; Christopher Benner; Ivan Garcia-Bassets; Aneel K. Aggarwal; Arshad Desai; Pieter C. Dorrestein; Christopher K. Glass; Michael G. Rosenfeld

While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1–S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules.

Qidong Hu; Young-Soo Kwon; Esperanza Nunez; Maria Dafne Cardamone; Kasey R. Hutt; Kenneth A. Ohgi; Ivan Garcia-Bassets; David W. Rose; Christopher K. Glass; Michael G. Rosenfeld; Xiang-Dong Fu

Although the role of liganded nuclear receptors in mediating coactivator/corepressor exchange is well-established, little is known about the potential regulation of chromosomal organization in the 3-dimensional space of the nucleus in achieving integrated transcriptional responses to diverse signaling events. Here, we report that ligand induces rapid interchromosomal interactions among specific subsets of estrogen receptor α-bound transcription units, with a dramatic reorganization of nuclear territories, which depends on the actions of nuclear actin/myosin-I machinery and dynein light chain 1. The histone lysine demethylase, LSD1, is required for these ligand-induced interactive loci to associate with distinct interchromatin granules, long thought to serve as “storage” sites for the splicing machinery, some critical transcription elongation factors, and various chromatin remodeling complexes. We demonstrate that this 2-step nuclear rearrangement is essential for achieving enhanced, coordinated transcription of nuclear receptor target genes.


Cell | 2006

Macrophage/Cancer Cell Interactions Mediate Hormone Resistance by a Nuclear Receptor Derepression Pathway

Ping Zhu; Sung Hee Baek; Eliot Michael Bourk; Kenneth A. Ohgi; Ivan Garcia-Bassets; Hideki Sanjo; Shizuo Akira; Paul F. Kotol; Christopher K. Glass; Michael G. Rosenfeld; David W. Rose

Defining the precise molecular strategies that coordinate patterns of transcriptional responses to specific signals is central for understanding normal development and homeostasis as well as the pathogenesis of hormone-dependent cancers. Here we report specific prostate cancer cell/macrophage interactions that mediate a switch in function of selective androgen receptor antagonists/modulators (SARMs) from repression to activation in vivo. This is based on an evolutionarily conserved receptor N-terminal L/HX7LL motif, selectively present in sex steroid receptors, that causes recruitment of TAB2 as a component of an N-CoR corepressor complex. TAB2 acts as a sensor for inflammatory signals by serving as a molecular beacon for recruitment of MEKK1, which in turn mediates dismissal of the N-CoR/HDAC complex and permits derepression of androgen and estrogen receptor target genes. Surprisingly, this conserved sensor strategy may have arisen to mediate reversal of sex steroid-dependent repression of a limited cohort of target genes in response to inflammatory signals, linking inflammatory and nuclear receptor ligand responses to essential reproductive functions.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters

Young-Soo Kwon; Ivan Garcia-Bassets; Kasey R. Hutt; Christine S. Cheng; Mingjie Jin; Dongyan Liu; Christopher Benner; Dong Wang; Zhen Ye; Marina Bibikova; Jian-Bing Fan; Lingxun Duan; Christopher K. Glass; Michael G. Rosenfeld; Xiang-Dong Fu

ChIP coupled with microarray provides a powerful tool to determine in vivo binding profiling of transcription factors to deduce regulatory circuitries in mammalian cells. Aiming at improving the specificity and sensitivity of such analysis, we developed a new technology called ChIP-DSL using the DNA selection and ligation (DSL) strategy, permitting robust analysis with much reduced materials compared with standard procedures. We profiled general and sequence-specific DNA binding transcription factors using a full human genome promoter array based on the ChIP-DSL technology, revealing an unprecedented number of the estrogen receptor (ERα) target genes in MCF-7 cells. Coupled with gene expression profiling, we found that only a fraction of these direct ERα target genes were highly responsive to estrogen and that the expression of those ERα-bound, estrogen-inducible genes was associated with breast cancer progression in humans. This study demonstrates the power of the ChIP-DSL technology in revealing regulatory gene expression programs that have been previously invisible in the human genome.


PLOS Genetics | 2011

Mechanisms establishing TLR4-responsive activation states of inflammatory response genes.

Laure Escoubet-Lozach; Christopher Benner; Minna U. Kaikkonen; Jean Lozach; Sven Heinz; Nathan Spann; Andrea Crotti; Josh Stender; Serena Ghisletti; Donna Reichart; Christine S. Cheng; Rosa Luna; Colleen Ludka; Roman Sasik; Ivan Garcia-Bassets; Alexander Hoffmann; Shankar Subramaniam; Gary Hardiman; Michael G. Rosenfeld; Christopher K. Glass

Precise control of the innate immune response is required for resistance to microbial infections and maintenance of normal tissue homeostasis. Because this response involves coordinate regulation of hundreds of genes, it provides a powerful biological system to elucidate the molecular strategies that underlie signal- and time-dependent transitions of gene expression. Comprehensive genome-wide analysis of the epigenetic and transcription status of the TLR4-induced transcriptional program in macrophages suggests that Toll-like receptor 4 (TLR4)-dependent activation of nearly all immediate/early- (I/E) and late-response genes results from a sequential process in which signal-independent factors initially establish basal levels of gene expression that are then amplified by signal-dependent transcription factors. Promoters of I/E genes are distinguished from those of late genes by encoding a distinct set of signal-dependent transcription factor elements, including TATA boxes, which lead to preferential binding of TBP and basal enrichment for RNA polymerase II immediately downstream of transcriptional start sites. Global nuclear run-on (GRO) sequencing and total RNA sequencing further indicates that TLR4 signaling markedly increases the overall rates of both transcriptional initiation and the efficiency of transcriptional elongation of nearly all I/E genes, while RNA splicing is largely unaffected. Collectively, these findings reveal broadly utilized mechanisms underlying temporally distinct patterns of TLR4-dependent gene activation required for homeostasis and effective immune responses.


Neuron | 2013

“Seq-ing” Insights into the Epigenetics of Neuronal Gene Regulation

Francesca Telese; Amir Gamliel; Dorota Skowronska-Krawczyk; Ivan Garcia-Bassets; Michael G. Rosenfeld

The epigenetic control of neuronal gene expression patterns has emerged as an underlying regulatory mechanism for neuronal function, identity, and plasticity, in which short- to long-lasting adaptation is required to dynamically respond and process external stimuli. To achieve a comprehensive understanding of the physiology and pathology of the brain, it becomes essential to understand the mechanisms that regulate the epigenome and transcriptome in neurons. Here, we review recent advances in the study of regulated neuronal gene expression, which are dramatically expanding as a result of the development of new and powerful contemporary methodologies, based on next-generation sequencing. This flood of new information has already transformed our understanding of many biological processes and is now driving discoveries elucidating the molecular mechanisms of brain function in cognition, behavior, and disease and may also inform the study of neuronal identity, diversity, and neuronal reprogramming.

Collaboration


Dive into the Ivan Garcia-Bassets's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang-Dong Fu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Rose

University of California

View shared research outputs
Top Co-Authors

Avatar

Kasey R. Hutt

University of California

View shared research outputs
Top Co-Authors

Avatar

Young-Soo Kwon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge