Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Gout is active.

Publication


Featured researches published by Ivan Gout.


Journal of Cell Biology | 2004

The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins

Laura S Harrington; Greg M. Findlay; Alexander Gray; Tatiana Tolkacheva; Simon Wigfield; Heike Rebholz; Jill Barnett; Nick R. Leslie; Susan Cheng; Pr Shepherd; Ivan Gout; C. Peter Downes; Richard F. Lamb

Insulin-like growth factors elicit many responses through activation of phosphoinositide 3-OH kinase (PI3K). The tuberous sclerosis complex (TSC1-2) suppresses cell growth by negatively regulating a protein kinase, p70S6K (S6K1), which generally requires PI3K signals for its activation. Here, we show that TSC1-2 is required for insulin signaling to PI3K. TSC1-2 maintains insulin signaling to PI3K by restraining the activity of S6K, which when activated inactivates insulin receptor substrate (IRS) function, via repression of IRS-1 gene expression and via direct phosphorylation of IRS-1. Our results argue that the low malignant potential of tumors arising from TSC1-2 dysfunction may be explained by the failure of TSC mutant cells to activate PI3K and its downstream effectors.


The International Journal of Biochemistry & Cell Biology | 2011

Functions and regulation of the 70kDa ribosomal S6 kinases.

Tim Fenton; Ivan Gout

The 70kDa ribosomal protein S6 kinases, S6K1 and S6K2 are two highly homologous serine/threonine kinases that are activated in response to growth factors, cytokines and nutrients. The S6 kinases have been linked to diverse cellular processes, including protein synthesis, mRNA processing, glucose homeostasis, cell growth and survival. Studies in model organisms have highlighted the roles that S6K activity plays in a number of pathologies, including obesity, diabetes, ageing and cancer. The importance of S6K function in human diseases has led to the development of S6K-specific inhibitors by a number of companies, offering the promise of improved tools with which to study these enzymes and potentially the effective targeting of deregulated S6K signalling in patients. Here we review the current literature on the role of S6Ks in the regulation of cell growth, survival and proliferation downstream of various signalling pathways and how their dysregulation contributes to the pathogenesis of human diseases.


The EMBO Journal | 2006

FGF‐2 protects small cell lung cancer cells from apoptosis through a complex involving PKCε, B‐Raf and S6K2

Olivier E. Pardo; Claudia Wellbrock; Umme K. Khanzada; Muriel Aubert; Imanol Arozarena; Sally Davidson; Frances Bowen; Peter J. Parker; Viktorovich Filonenko; Ivan Gout; Nj Sebire; Richard Marais; Julian Downward; Michael J. Seckl

Patients with small cell lung cancer (SCLC) die because of chemoresistance. Fibroblast growth factor‐2 (FGF‐2) increases the expression of antiapoptotic proteins, XIAP and Bcl‐XL, and triggers chemoresistance in SCLC cells. Here we show that these effects are mediated through the formation of a specific multiprotein complex comprising B‐Raf, PKCε and S6K2. S6K1, Raf‐1 and other PKC isoforms do not form similar complexes. RNAi‐mediated downregulation of B‐Raf, PKCε or S6K2 abolishes FGF‐2‐mediated survival. In contrast, overexpression of PKCε increases XIAP and Bcl‐XL levels and chemoresistance in SCLC cells. In a tetracycline‐inducible system, increased S6K2 kinase activity triggers upregulation of XIAP, Bcl‐XL and prosurvival effects. However, increased S6K1 kinase activity has no such effect. Thus, S6K2 but not S6K1 mediates prosurvival/chemoresistance signalling.


Journal of Biological Chemistry | 2009

Phosphorylation of Histone H3 Thr-45 Is Linked to Apoptosis

Paul J. Hurd; Andrew J. Bannister; Karen Halls; Mark A. Dawson; Michiel Vermeulen; J. Olsen; Heba M. Ismail; Joanna Somers; Matthias Mann; Tom Owen-Hughes; Ivan Gout; Tony Kouzarides

Numerous post-translational modifications have been identified in histones. Most of these occur within the histone tails, but a few have been identified within the histone core sequences. Histone core post-translational modifications have the potential to directly modulate nucleosome structure and consequently DNA accessibility. Here, we identify threonine 45 of histone H3 (H3T45) as a site of phosphorylation in vivo. We find that phosphorylation of H3T45 (H3T45ph) increases dramatically in apoptotic cells, around the time of DNA nicking. To further explore this connection, we analyzed human neutrophil cells because they are short-lived cells that undergo apoptosis in vivo. Freshly isolated neutrophils contain very little H3T45ph, whereas cells cultured for 20 h possess significant amounts; the kinetics of H3T45ph induction closely parallel those of caspase-3 activation. Cytokine inhibition of neutrophil apoptosis leads to reduced levels of H3T45ph. We identify protein kinase C-δ as the kinase responsible for H3T45ph in vitro and in vivo. Given the nucleosomal position of H3T45, we postulate that H3T45ph induces structural change within the nucleosome to facilitate DNA nicking and/or fragmentation.


American Journal of Human Genetics | 2014

Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation

Sabrina Dusi; Lorella Valletta; Tobias B. Haack; Yugo Tsuchiya; Paola Venco; Marco Tigano; Nikita Demchenko; Thomas Wieland; Thomas Schwarzmayr; Tim M. Strom; Federica Invernizzi; Barbara Garavaglia; Allison Gregory; Lynn Sanford; Jeffrey Hamada; Conceição Bettencourt; Henry Houlden; Luisa Chiapparini; Giovanna Zorzi; Manju A. Kurian; Nardo Nardocci; Holger Prokisch; Susan J. Hayflick; Ivan Gout; Valeria Tiranti

Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.


Molecular and Cellular Biology | 2003

Protein Kinase C Phosphorylates Ribosomal Protein S6 Kinase βII and Regulates Its Subcellular Localization

Taras Valovka; Frédérique Verdier; Rainer Cramer; Alexander Zhyvoloup; Tim Fenton; Heike Rebholz; Mong-Lien Wang; Miechyslav Gzhegotsky; Alexander Lutsyk; Genadiy Matsuka; Valeriy Filonenko; Lijun Wang; Christopher G. Proud; Peter J. Parker; Ivan Gout

ABSTRACT The ribosomal protein S6 kinase (S6K) belongs to the AGC family of Ser/Thr kinases and is known to be involved in the regulation of protein synthesis and the G1/S transition of the cell cycle. There are two forms of S6K, termed S6Kα and S6Kβ, which have cytoplasmic and nuclear splice variants. Nucleocytoplasmic shuttling has been recently proposed for S6Kα, based on the use of the nuclear export inhibitor, leptomycin B. However, the molecular mechanisms regulating subcellular localization of S6Ks in response to mitogenic stimuli remain to be elucidated. Here we present data on the in vitro and in vivo phosphorylation of S6Kβ, but not S6Kα, by protein kinase C (PKC). The site of phosphorylation was identified as S486, which is located within the C-terminal nuclear localization signal. Mutational analysis and the use of phosphospecific antibodies provided evidence that PKC-mediated phosphorylation at S486 does not affect S6K activity but eliminates the function of its nuclear localization signal and causes retention of an activated form of the kinase in the cytoplasm. Taken together, this study uncovers a novel mechanism for the regulation of nucleocytoplasmic shuttling of S6KβII by PKC-mediated phosphorylation.


Oncogene | 2001

Novel cross talk between MEK and S6K2 in FGF-2 induced proliferation of SCLC cells

Olivier E. Pardo; Alexandre Arcaro; Giovanni Salerno; Teresa D. Tetley; Taras Valovka; Ivan Gout; Michael J. Seckl

Here, we show that fibroblast growth factor-2 (FGF-2) induces proliferation of H-510 and H-69 small cell lung cancer (SCLC) cells. However, the optimal response to FGF-2 was obtained at 10-fold lower concentrations in H-510 cells. This correlated with the selective activation of the mitogen-activated protein kinase kinase (MEK) pathway in H-510, but not H-69 cells. Moreover, inhibition of MEK with PD098059 blocked FGF-2-induced proliferation in H-510 cells only. Similarly, ribosomal protein S6 kinase 2 (S6K2), a recently identified homologue of S6K1 was activated by FGF-2 in H-510, but not H-69 cells. This activation was independent of phosphatidylinositol-3 kinase, but was sensitive to inhibition of the MEK pathway. These data suggest that S6K2 is a novel downstream target of MEK. The potency of FGF-2 in H-510 cells might reflect this additional MEK/S6K2 signalling. In contrast to S6K2, S6K1 was activated in both SCLC cell lines. Inhibition of the mammalian target of rapamycin with 10u2009ng/ml rapamycin blocked S6K1 activation and proliferation of both lines. However, even at 100u2009ng/ml, rapamycin only partially inhibited S6K2. Strikingly, this correlated with inhibition of MEK signalling. Our data indicate that S6K1, and possibly S6K2, are involved in FGF-2-induced SCLC cell growth, a notion supported by the overexpression and higher baseline activity of both isoforms in SCLC lines, as compared to normal human type-II pneumocytes.


Journal of Biological Chemistry | 2010

Involvement of Heterogeneous Ribonucleoprotein F in the Regulation of Cell Proliferation via the Mammalian Target of Rapamycin/S6 Kinase 2 Pathway

Eddy T. H. Goh; Olivier E. Pardo; Nicholas Michael; Andrew Niewiarowski; Nick Totty; Dariya Volkova; Irina R. Tsaneva; Michael J. Seckl; Ivan Gout

The S6 kinases (S6Ks) have been linked to a number of cellular processes, including translation, insulin metabolism, cell survival, and RNA splicing. Signaling via the phosphotidylinositol 3-kinase and mammalian target of rapamycin (mTOR) pathways is critical in regulating the activity and subcellular localization of S6Ks. To date, nuclear functions of both S6K isoforms, S6K1 and S6K2, are not well understood. To better understand S6K nuclear roles, we employed affinity purification of S6Ks from nuclear preparations followed by mass spectrometry analysis for the identification of novel binding partners. In this study, we report that in contrast to S6K1, the S6K2 isoform specifically associates with a number of RNA-binding proteins, including heterogeneous ribonucleoproteins (hnRNPs). We focused on studying the mechanism and physiological relevance of the S6K2 interaction with hnRNP F/H. Interestingly, the S6K2-hnRNP F/H interaction was not affected by mitogenic stimulation, whereas mTOR binding to hnRNP F/H was induced by serum stimulation. In addition, we define a new role of hnRNP F in driving cell proliferation, which could be partially attenuated by rapamycin treatment. S6K2-driven cell proliferation, on the other hand, could be blocked by small interfering RNA-mediated down-regulation of hnRNP F. These results demonstrate that the specific interaction between mTOR and S6K2 with hnRNPs is implicated in the regulation of cell proliferation.


Journal of Biological Chemistry | 2006

Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17.

Ganna Panasyuk; Ivan Nemazanyy; Alexander Zhyvoloup; Maria Bretner; David W. Litchfield; Valeriy Filonenko; Ivan Gout

Ribosomal S6 kinases (S6Ks) are principal players in the regulation of cell growth and energy metabolism. Signaling via phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways mediates the activation of S6K in response to various mitogenic stimuli. The family of S6Ks consists of two forms, S6K1 and -2, that have cytoplasmic and nuclear splicing variants, S6K1 II and S6K1 I, respectively. Nuclear-cytoplasmic shuttling of both isoforms induced by mitogenic stimuli has been reported recently. Here we present the identification of protein kinase CK2 (CK2) as a novel binding and regulatory partner for S6K1 II. The interaction between S6K1 II and CK2β regulatory subunit was initially identified in a yeast two-hybrid screen and further confirmed by co-immunoprecipitation of transiently expressed and endogenous proteins. The interaction between S6K1 II and CK2 was found to occur in serum-starved and serum-stimulated cells. In addition, we found that S6K1 II is a substrate for CK2. The localization of the CK2 phosphorylation site was narrowed down to Ser-17 in S6K1 II. Mutational analysis and the use of phosphospecific antibody indicate that Ser-17 is a major in vitro and in vivo phosphorylation site for CK2. Functional studies reveal that, in contrast to the wild type kinase, the phosphorylation-mimicking mutant of S6K1 II (S17E) retains its cytoplasmic localization in serum-stimulated cells. Treatment of cells with the nuclear export inhibitor leptomycin B revealed that the S17E mutant accumulates in the nucleus to the same extent as S6K1 II wild type. These results indicate that nuclear import of the S17E mutant is not affected, although the export is significantly enhanced. We also provide evidence that nuclear export of S6K1 is mediated by a CRM1-dependent mechanism. Taken together, this study establishes a functional link between S6K1 II and CK2 signaling, which involves the regulation of S6K1 II nuclear export by CK2-mediated phosphorylation of Ser-17.


Journal of Biological Chemistry | 2009

mTORβ Splicing Isoform Promotes Cell Proliferation and Tumorigenesis

Ganna Panasyuk; Ivan Nemazanyy; Aleksander Zhyvoloup; Valeriy Filonenko; Derek Davies; Mathew Robson; R. Barbara Pedley; Michael D. Waterfield; Ivan Gout

The mTOR (mammalian target of rapamycin) promotes growth in response to nutrients and growth factors and is deregulated in numerous pathologies, including cancer. The mechanisms by which mTOR senses and regulates energy metabolism and cell growth are relatively well understood, whereas the molecular events underlining how it mediates survival and proliferation remain to be elucidated. Here, we describe the existence of the mTOR splicing isoform, TORβ, which, in contrast to the full-length protein (mTORα), has the potential to regulate the G1 phase of the cell cycle and to stimulate cell proliferation. mTORβ is an active protein kinase that mediates downstream signaling through complexing with Rictor and Raptor proteins. Remarkably, overexpression of mTORβ transforms immortal cells and is tumorigenic in nude mice and therefore could be a proto-oncogene.

Collaboration


Dive into the Ivan Gout's collaboration.

Top Co-Authors

Avatar

Valeriy Filonenko

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

Ganna Panasyuk

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ivan Nemazanyy

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Yugo Tsuchiya

University College London

View shared research outputs
Top Co-Authors

Avatar

Tim Fenton

University College London

View shared research outputs
Top Co-Authors

Avatar

Ramziya Kiyamova

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

Jodie Gwalter

University College London

View shared research outputs
Top Co-Authors

Avatar

Hryhoriy Krynytskyy

Ukrainian National Forestry University

View shared research outputs
Top Co-Authors

Avatar

Oksana Breus

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

Oksana Malanchuk

National Academy of Sciences of Ukraine

View shared research outputs
Researchain Logo
Decentralizing Knowledge