Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Gut is active.

Publication


Featured researches published by Ivan Gut.


Pharmacogenomics | 2013

The expression profile of ATP-binding cassette transporter genes in breast carcinoma.

Viktor Hlavac; Veronika Brynychova; Radka Vaclavikova; Marie Ehrlichová; David Vrána; Václav Pecha; Renata Koževnikovová; Markéta Trnková; Jiří Gatěk; Dana Kopperová; Ivan Gut; Pavel Soucek

AIM ATP-binding cassette (ABC) transporters contribute to development of resistance to anticancer drugs via ATP-dependent drug efflux. A major goal of our study was to investigate associations between the expression of ABC transporters and outcome of breast carcinoma patients. PATIENTS & METHODS Transcript levels of all 49 human ABC transporters were determined in post-treatment tumor and non-neoplastic tissue samples from 68 breast carcinoma patients treated by neoadjuvant chemotherapy. Six ABC transporters were then evaluated in independent series of 100 pretreatment patients. RESULTS ABCA5/6/8/9/10, ABCB1/5/11, ABCC6/9, ABCD2/4, ABCG5 and ABCG8 were significantly downregulated and ABCA2/3/7/12, ABCB2/3/8/9/10, ABCC1/4/5/10/11/12, ABCD1/3, ABCE1, ABCF1/2/3 and ABCG1 were upregulated in post-treatment tumors compared with non-neoplastic tissues. Significant associations of intratumoral levels of ABCC1 and ABCC8 with grade and expression of hormonal receptors were found in both sets of patients. ABCA12, ABCA13 and ABCD2 levels were significantly associated with the response to neoadjuvant chemotherapy in post-treatment patients. Protein expression of ABCA12, ABCC8 and ABCD2 in tumor tissues of patients with breast carcinoma was observed by immunoblotting for the first time. CONCLUSION ABCA12, ABCA13, ABCC1, ABCC8 and ABCD2 present potential modifiers of progression and response to the chemotherapy of breast carcinoma.


European Journal of Human Genetics | 2004

Breast cancer: role of polymorphisms in biotransformation enzymes.

Jana Šarmanová; Simona Šůsová; Ivan Gut; Marcela Mrhalova; Roman Kodet; Jan Adámek; Zdeněk Roth; Pavel Soucek

We aimed at determining whether any association exists between genetic polymorphisms in epoxide hydrolase (EPHX1), NADPH-quinone oxidoreductase (NQO1), glutathione S-transferases (GSTM1/P1/T1) and individual susceptibility to breast cancer. Polymerase chain reaction-restriction fragment length polymorphism-based genotyping assays were used to determine the frequency of polymorphisms in EPHX1 (exons 3 and 4), NQO1 (exon 6), GSTM1 (deletion), GSTP1 (exon 5), and GSTT1 (deletion) in a case–control study comprised of 238 patients with breast cancer and 313 healthy individuals. The distribution of genotypes in exon 6 of NQO1 was significantly different between the control group and breast cancer cases. Age-adjusted odds ratio (OR) for variant genotype NQO1*2/*2 was 3.68 (confidence interval (CI)=1.41–9.62, P=0.008). Association of GSTP1*2/*2 genotype as well as that of low EPHX1 activity deduced by combinations of genotypes in exons 3 and 4 with breast cancer was suggestive, but nonsignificant. Individuals simultaneously lacking GSTM1 and carrying at least one GSTP1 variant allele were at significantly higher risk of breast cancer (OR=2.03, CI=1.18–3.50, P=0.010). Combinations of either GSTM1null or GSTP1*2 with low activity of EPHX1 presented significant risk of breast cancer (OR=1.88, CI=1.00–3.52, P=0.049 and OR=2.40, CI=1.15–5.00, P=0.019, respectively) as well. In conclusion, the results suggest that genetic polymorphisms in biotransformation enzymes may play a significant role in the development of breast cancer.


Archives of Toxicology | 1996

The role of CYP2E1 and 2B1 in metabolic activation of benzene derivatives

Ivan Gut; Vessela Nedelcheva; Pavel Soucek; Pavel Stopka; Pavel Vodicka; Harry V. Gelboin; Magnus Ingelman-Sundberg

Abstract CYP2B1 and 2E1 oxidized toluene, aniline and monochlorobenzene (MCB) to water-soluble metabolites and to products covalently binding to microsomal proteins from male Wistar rats at high efficiency. Oxidation of benzene to covalently binding metabolites was catalysed by CYP2B1 and 2E1 more effectively than the formation of water-soluble metabolites, especially at low benzene levels. Thus, the formation of covalently binding products was inversely related but formation of soluble metabolites was proportional to benzene concentration. 1,4-Benzoquinone was responsible for the majority of covalent binding to microsomal proteins, being suppressed by ascorbate; 1,4-semiquinone was not important, since α-tocopherol did not inhibit the covalent binding and ESR showed its rapid decay, if NADPH was available. Specific antibodies and inhibitors confirmed the role of CYP2B1 and 2E1 induction. Covalent binding of benzene to DNA was largely due to benzene oxide; ∼50% was due to N-7 guanine adduct. CYP2E1 oxidizing benzene via phenol to 1,4-hydroquinone appeared to mediate its further oxidation to 1,4-benzoquinone, which also occurred spontaneously, but was reversed in a reducing environment of microsomes with NADPH. Production of OH radicals in microsomes with NADPH was greatly stimulated by HQ and less by BQ, especially in CYP2E1 induced microsomes, although the quinones themselves failed to produce OH radicals. The quinones could act by stimulation of the CYP futile cycle. Therefore, CYP2B1 and 2E1 in rats appeared essential for metabolic activation of benzene derivatives to potentially genotoxic products; BQ dominated the covalent binding of benzene to proteins, whereas DNA adducts were largely due to benzene oxide.


Archives of Toxicology | 1993

Exposure to various benzene derivatives differently induces cytochromes P450 2B1 and P450 2E1 in rat liver

Ivan Gut; Ylva Terelius; Emil Frantík; Igor Linhart; Pavel Soucek; Bronislava Filipcová; Hana Klučková

Benzene (B), toluene (T), ethylbenzene (EB), styrene (S) and xylene isomers (oX, mX, pX) are important environmental pollutants and B is a proved human carcinogen. Their inhalation by male Wistar rats (4 mg/1,20 h/day, 4 days) caused cytochrome P450 (P450) induction. The degree of P450 2B1 induction increased and that of 2E1 decreased in the series B, T, EB, S, oX, mX and pX, as estimated by Western blots, while neither solvent was as effective for 2B1 induction as phenobarbital and B was more effective for 2E1 than ethanol. The levels of several other P450s decreased after exposure to these solvents, B being most effective. Exposure to these solvents increased in vitro hepatic microsomal oxidation of B and aniline (AN) (2E1 substrates) 3 to 6-fold, indicating induction of this P450. T oxidation was increased 2 to 4-fold and chlorobenzene (ClB) oxidation 3-fold. Sodium phenobarbital (PB, 80 mg/kg/day, 4 days, i.p.) did not increase ethylmorphine (EM) and benzphetamine (BZP) demethylation (2B1 substrates), neither of the B derivatives did so, and oX decreased it; however, pentoxyresorufin O-dealkylation was well related to the immunochemically detected 2B1 levels in control, PB and B microsomes. PB did not increase B, but increased T and C1B oxidation 2–4 and 3-fold, respectively, indicating possible 2B1 role in their oxidation. B oxidation after various inducers was related to immunochemical 2E1 levels, T and C1B oxidation to both 2B1 and 2E1 and AN oxidation to 2E1 and 1A2 levels. Very efficient B oxidation by 2E1 at low B levels indicates that induction of 2E1 may contribute to B myelotoxicity in vivo more than any other P450 enzyme tested, especially considering the fact that B is the most efficient inducer of its metabolism.


Archives of Toxicology | 1999

Metabolism of benzene in human liver microsomes: individual variations in relation to CYP2E1 expression.

Vessela Nedelcheva; Ivan Gut; Pavel Soucek; Bronislava Tichavská; Lucie Týnkova; Jaroslav Mráz; F. Peter Guengerich; Magnus Ingelman-Sundberg

Abstract In human liver microsomes the oxidations of benzene, chlorzoxazone, aniline, dimethylformamide, and 4-nitrophenol were significantly correlated with each other and with the level of cytochrome P450 (CYP) 2E1 estimated by immunoblotting. Moreover, benzene oxidation to water-soluble metabolites was suppressed by 0.1 mM diethyldithiocarbamate, supposedly a specific inhibitor of CYP2E1 at this level. None of these metabolic rates correlated with immunochemically determined levels of CYP1A2, 2C9, and 3A4 nor oxidation of 7-ethoxyresorufin, tolbutamide, and nifedipine. Benzene oxidation to water-soluble metabolites was characterized by typical Michaelis-Menten kinetics. The different benzene Km values seen in individual human microsomal samples were not correlated with the level or activity of CYP1A2, 2C9, 2E1, and 3A4 but could be due to CYP2E1 microheterogeneity. The lowest Km for benzene oxidation could be related to C/D and/or c1/c2 polymorphism of CYP2E1 gene. Covalent binding of benzene reactive metabolites to microsomal proteins was also correlated with the CYP2E1 metabolic rates and immunochemical levels. At high concentrations of benzene covalent binding was inversely related to benzene concentrations (as well as to formation of water-soluble metabolites) in agreement with the view that secondary metabolites, mainly benzoquinone, are responsible for the covalent binding.


International Journal of Cancer | 2012

Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas

Miluse Hubackova; Radka Vaclavikova; Marie Ehrlichová; Marcela Mrhalova; Roman Kodet; Katerina Kubackova; David Vrána; Ivan Gut; Pavel Soucek

Associations of transcript levels of oxidative stress‐modifying genes SOD2, SOD3, NQO1 and NQO2 and their functional single nucleotide polymorphisms (SNPs) rs4880, rs1799895, rs2536512, rs699473, rs1800566 and rs1143684 with prognosis of breast cancer patients were studied. SNPs were assessed by allelic discrimination in a cohort of 321 breast cancer patients from the Czech Republic. Transcript levels were determined by real‐time polymerase chain reaction (PCR) with absolute quantification in tumor and adjacent non‐neoplastic control tissues. Both genotypes and transcript levels were then compared with available clinical data on patients. Patients carrying low activity allele Leu in NQO2 rs1143684 had a greater incidence of stage 0 or I disease (i.e., better prognosis) than patients with the Phe/Phe genotype. This association was more evident in patients without expression of progesterone receptors (p = 0.031). Patients carrying the Thr allele in SOD3 rs2536512 SNP had a significantly greater incidence of tumors expressing estrogen receptors than patients carrying the Ala/Ala genotype (p = 0.007). SOD3 transcript level was significantly higher in grade 1 or 2 tumors than in grade 3 tumors (p = 0.006). Patients carrying T allele in SOD3 rs699473 SNP had significantly poorer progression‐free survival (PFS) than patients carrying the CC genotype (p = 0.038). The same applied to the subgroup of patients treated by hormonal regimens (p = 0.021). Patients carrying the high activity Ala/Ala genotype in SOD2 (rs4880) had significantly poorer PFS than Val allele carriers in the group treated by cyclophosphamide but not hormonal regimens (p = 0.004). Our results suggest that NQO2, SOD2 and SOD3 may significantly modify prognosis of breast cancer patients and that their significance should be further characterized.


Naunyn-schmiedebergs Archives of Pharmacology | 2005

Transport and cytotoxicity of paclitaxel, docetaxel, and novel taxanes in human breast cancer cells

Marie Ehrlichová; Radka Vaclavikova; Iwao Ojima; Antonella Pepe; Larisa Kuznetsova; Jin Chen; Jaroslav Truksa; Jan Kovar; Ivan Gut

The resistance of tumors to classic taxanes (paclitaxel and docetaxel) presents problems in chemotherapy. Thus, new taxanes with higher antitumor activity in resistant tumors are synthesized. This study compared cytotoxicity and transport of paclitaxel and docetaxel with novel taxanes SB-T-1103, SB-T-1214, and SB-T-1216 in adriamycin-sensitive (MDA-MB-435) and -resistant (NCI/ADR-RES) human breast cancer cells. The cell lines examined differ in adriamycin transport, suggesting different expression of ABC membrane transporters. Reverse transcription-polymerase chain reaction revealed that NCI/ADR-RES cells expressed high levels of P-glycoprotein mRNA, which was absent in MDA-MB-435 cells, while the opposite was true for MRP2 mRNA. Both cell lines shared or differently expressed eight other ABC transporters and LRP. NCI/ADR-RES cells were 1,000-fold more resistant to paclitaxel and 600-fold more resistant to docetaxel in MTT assay than MDA-MB-435 cells, but almost equally sensitive to SB-T-1103, SB-T-1214, and SB-T-1216. This complied with the fact that NCI/ADR-RES cells absorbed almost 20-fold less [14C]paclitaxel, about 7-fold less docetaxel, and almost equal amounts of SB-T-1103, SB-T-1214, and SB-T-1216 as the MDA-MB-435 cells. Verapamil increased uptake of [14C]paclitaxel by NCI/ADR-RES cells 7-fold and decreased its efflux 2.5-fold; in contrast, it weakly influenced uptake and increased the efflux in MDA-MB-435 cells. SB-T-1103 and SB-T-1216 did not influence transport of paclitaxel, but SB-T-1214 decreased [14C]paclitaxel uptake in both cell lines indicating inhibition of uptake. This suggests that the novel taxanes are not inhibitors of P-glycoprotein. However, novel taxanes exert much higher activity on resistant tumor cells than classic taxanes and seem to be potential drugs for therapy in taxane-resistant tumors.


Xenobiotica | 2006

Metabolism of new-generation taxanes in human, pig, minipig and rat liver microsomes

Ivan Gut; Iwao Ojima; Radka Vaclavikova; P. Simek; S. Horsky; I. Linhart; P. Soucek; E. Kondrova; Larissa V. Kuznetsova; Jin Chen

The novel taxanes SB-T-1102, SB-T-1214 and SB-T-1216 are up to 1000-fold more cytotoxic for resistant tumour cells than clinically used paclitaxel and docetaxel, and the current study has examined the metabolism of these new taxanes in human, rat, pig and minipig liver microsomes. Metabolites were characterized by high-performance liquid chromatography (HPLC)/tandem mass spectrometry (MS/MS) analysis. Metabolic pathways derived from their structures were confirmed by investigating subsequent metabolism of purified metabolites. SB-T-1102, SB-T-1214 and SB-T-1216 were metabolized to 14, 10 and 11 products, respectively. In contrast to docetaxel, side-chain hydroxylation did not occur at their tert-butyl group, but on the isobutyl (SB-T-1102) or isobutenyl (SB-T-1214 and SB-T-1216) chains. Species differences in their metabolism were observed. For example, human and untreated rat microsomes hydroxylated SB-T-1216 preferentially at the side-chain, whereas pig and minipig microsomes preferentially metabolized more at the taxane core. The increased formation of secondary and tertiary metabolites in rat microsomes with high expression of CYP3A1/2 compared with uninduced rats confirmed the role of CYP3A in taxane metabolism. All major products were formed by human cDNA-expressed CYP3A4 and none by CYP1A2, 1B1, 2A6, 2C9 and 2E1, indicating the principal role of CYP3A orthologues in SB-T metabolism. The knowledge of metabolic pathways of the examined agents and of their rates of formation is important due to possible metabolic inactivation of these three novel drugs with a great potential for the therapy of taxane-resistant tumours. The relatively slow metabolism of SB-T-1102 could be favourable for its antitumour efficiency in vivo.


Chemico-Biological Interactions | 1998

Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes

Vessela Nedelcheva; Ivan Gut; Pavel Soucek; Emil Frantík

We studied metabolism of monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB) and 1,4-DCB in liver microsomes from untreated male and female Wistar rats and B6C3F1 mice or in those after the induction of CYP3A or 2E1 as well as in human male liver microsomes. MCB and 1,2-DCB were oxidised mainly by rat and human CYP2E1. It was found that 1,4-DCB was oxidised by rat and human CYP2E1 at a several-fold lower rate than 1,2-DCB, but a greater part to covalently binding products. In contrast to previous studies showing rat CYP3A1 as the main CYP form oxidising both DCBs, our experiments indicate only a certain role of rat and human CYP3A in MCB, 1,2-DCB and 1,4-DCB oxidation to covalently bound products. The relative roles of human liver CYP2E1 and 3A4 in the metabolism of 1,4-DCB seem to be individually different. Metabolic rates of MCB, 1,2-DCB and 1,4-DCB correlated with CYP2E1 immunochemical level in microsomes from 11 different human livers and with metabolic rates of CYP2E1 substrates. These rates in different human livers were up to 10-fold different and were generally several-fold higher than those in untreated rats or mice. Metabolic activation of MCB and 1,2-DCB to products binding covalently to microsomal proteins and to calf-thymus DNA, respectively, mostly corresponded to production of water-soluble metabolites. Significant species and sex differences in the oxidation of MCB, 1,2-DCB and 1,4-DCB were reflected in a markedly higher oxidation in male mice than male rats and higher oxidation in male than female mice. The formation of covalently bound products generally corresponded to production of soluble metabolites, but female rats formed significantly less covalently bound products of 1,4-DCB (and also of 1,2-DCB and MCB) than male rats and mice of both sexes, in possible reflection of the fact that 1,4-DCB is not carcinogenic in female rats despite its carcinogenicity for male rats and both sexes of mice.


European Journal of Human Genetics | 2003

Multiplex single-tube screening for mutations in the Nijmegen Breakage Syndrome ( NBS1 ) gene in Hodgkin's and non-Hodgkin's lymphoma patients of Slavic origin

Pavel Soucek; Ivan Gut; Marek Trneny; Eva Skovlund; Grethe Grenaker Alnæs; Tom Kristensen; Anne Lise Børresen-Dale; Vessela N. Kristensen

Patients with Nijmegen Breakage Syndrome (NBS) have a high risk to develop malignant diseases, most frequently B-cell lymphomas. It has been demonstrated that this chromosomal breakage syndrome results from mutations in the NBS1 gene that cause either a loss of full-length protein expression or expression of a variant protein. A large proportion of the known NBS patients are of Slavic origin who carry a major founder mutation 657del5 in exon 6 of the NBS1 gene. The prevalence of this mutation in Slav populations is reported to be high, possibly contributing to higher cancer risk in these populations. Therefore, if mutations in NBS1 are associated with higher risk of developing lymphoid cancers it would be most likely to be observed in these populations. A multiplex assay for four of the most frequent NBS1 mutations was designed and a series of 119 lymphoma patients from Slavic origin as well as 177 healthy controls were tested. One of the patients was a heterozygote carrier of the ACAAA deletion mutation in exon 6 (1/119). No mutation was observed in the control group, despite the reported high frequency (1/177). The power of this study was 30% to detect a relative risk of 2.0.

Collaboration


Dive into the Ivan Gut's collaboration.

Top Co-Authors

Avatar

Pavel Soucek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Radka Vaclavikova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Marie Ehrlichová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Marcela Mrhalova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Roman Kodet

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Iwao Ojima

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Jan Kovář

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Miluse Hubackova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Eugen Kubala

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Petr Šimek

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge