Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Hung is active.

Publication


Featured researches published by Ivan Hung.


Bioresource Technology | 2013

Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene

Junyeong Park; Ivan Hung; Zhehong Gan; Orlando J. Rojas; Kwang Hun Lim; Sunkyu Park

The relationship between physicochemical properties of biochar-based activated carbons and its adsorption was investigated using an aromatic model compound, phenanthrene. Solid-state (13)C NMR analysis indicated more condensed aromatic structures when pyrolysis temperature increased or after activation process induced. The increasing aromaticity and non-protonated carbon fraction of the activated biochar treated at 300°C amounted to 14.7% and 24.0%, respectively, compared to 7.4% and 4.4% for biochar treated at 700°C. The surface area and pore volume were reduced with the increase in pyrolysis temperature, but increased after activation. Surface characteristics correlated with the initial sorption rate and equilibrium concentration of phenanthrene, but not with the aromaticity. Solid-state (2)H NMR for phenanthrene-d10 saturated activated biochars, however, showed substantial difference in molecular mobility, which might be due to the high aromaticity of the activated biochars. Overall, these results provide an opportunity to manipulate the characteristics of biomass-based adsorbents based on the application needs.


Chemical Physics Letters | 2003

Signal enhancement in NMR spectra of half-integer quadrupolar nuclei via DFS–QCPMG and RAPT–QCPMG pulse sequences

Robert W. Schurko; Ivan Hung; Cory M. Widdifield

Abstract Two signal enhancement schemes capable of providing large signal-to-noise gains in static and magic-angle spinning NMR spectra of the central transition of half-integer quadrupolar nuclei are presented. Amplitude-modulated double-frequency sweeps (AM-DFS) and rotor-assisted population transfer (RAPT) pulse sequences are used as preparatory sequences in combination with the quadrupolar Carr–Purcell Meiboom–Gill (QCPMG) pulse sequence to obtain large signal enhancements ranging from one to two orders of magnitude. Specific applications to two spin-3/2 nuclei ( 87 Rb and 39 K) and one spin-5/2 nucleus ( 85 Rb) are presented.


Angewandte Chemie | 2012

M2 Proton Channel Structural Validation from Full Length Protein Samples in Synthetic Bilayers and E. coli Membranes

Yimin Miao; Huajun Qin; Riqiang Fu; Mukesh Sharma; Thach V. Can; Ivan Hung; Sorin Luca; Peter L. Gor'kov; William W. Brey; Timothy A. Cross

Membrane protein structure and function, especially for small membrane proteins, can be highly sensitive to the membrane mimetic environment used for structural characterization, as exemplified by the M2 protein from influenza A virus that has been characterized in liquid crystalline lipid bilayers, detergent micelles and in detergent based crystals.[3–8] Various transmembrane (TM) helical tilt angles, different drug binding sites and amphipathic helix interactions, as well as a lack of consensus on the sidechain geometry for the functionally critical residues is apparent from this set of structures. Many of these structural differences can be explained based on the influence of the proteins environment. Hydrophobic thickness influences the helical tilt; detergent penetration into the helical bundle and crystal contacts influence the packing and hence tilt of the helices, while the highly curved surface of micelles destabilize the interactions of amphipathic helices with what would be the bilayer interface.[9] These structural perturbations can influence functional properties such as the binding of the antiviral drug to the protein and our understanding of the proton channel functional mechanism. Exactly how well the native membrane needs to be modeled to achieve a native membrane protein structure is explored here, where we aim to validate the structure of the tetrameric M2 conductance domain (M2CD; residues 22–62; PDB #2L0J) that has been structurally characterized in synthetic lipid bilayers. We have set out to do this by observing the full length protein in synthetic bilayers, as well as in native E. coli membranes. For the first time we report on structural insights from the full length M2 (M2FL) protein using magic angle spinning solid state NMR (ssNMR) and we present spectra of the protein as it is inserted into the E. coli membranes by the cellular apparatus without ever being exposed to a detergent environment. These results validate the earlier structural results obtained from the M2CD observed in a liquid crystalline bilayer envionment.


Journal of the American Chemical Society | 2009

Solid-state chlorine NMR of group IV transition metal organometallic complexes.

Aaron J. Rossini; Ryan W. Mills; Graham A. Briscoe; Erin L. Norton; Stephen J. Geier; Ivan Hung; Shaohui Zheng; Jochen Autschbach; Robert W. Schurko

Static solid-state (35)Cl (I = (3)/(2)) NMR spectra of the organometallic compounds Cp(2)TiCl(2), CpTiCl(3), Cp(2)ZrCl(2), Cp(2)HfCl(2), Cp*(2)ZrCl(2), CpZrCl(3), Cp*ZrCl(3), Cp(2)ZrMeCl, (Cp(2)ZrCl)(2)mu-O, and Cp(2)ZrHCl (Schwartzs reagent) have been acquired at 9.4 T with the quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) sequence in a piecewise manner. Spectra of several samples have also been acquired at 21.1 T. The electric field gradient (EFG) tensor parameters, the quadrupolar coupling constant (C(Q)) and quadrupolar asymmetry parameter (eta(Q)), are readily extracted from analytical simulations of the spectra. The (35)Cl EFG and chemical-shift tensor parameters are demonstrated to be sensitive probes of metallocene structure and allow for differentiation of monomeric and oligomeric structures. First-principles calculations of the (35)Cl EFG parameters successfully reproduce the experimental values and trends. The origin of the observed values of C(Q)((35)Cl) are further examined with natural localized molecular orbital (NLMO) analyses. The combination of experimental and theoretical methods applied to the model compounds are employed to structurally characterize Schwartzs reagent (Cp(2)ZrHCl), for which a crystal structure is unavailable. Aside from a few select examples of single-crystal NMR spectra, this is the first reported application of solid-state (35)Cl NMR spectroscopy to molecules with covalently bound chlorine atoms. It is anticipated that the methodology outlined herein will find application in the structural characterization of a wide variety of chlorine-containing transition-metal and main-group systems.


Journal of the American Chemical Society | 2009

Probing heteronuclear N-15-O-17 and C-13-O-17 connectivities and proximities by solid-state NMR spectroscopy

Ivan Hung; † Anne-Christine Uldry; Johanna Becker-Baldus; Amy L. Webber; Alan Wong; Mark E. Smith; Siân A. Joyce; Jonathan R. Yates; Chris J. Pickard; Ray Dupree; Steven P. Brown

Heteronuclear solid-state magic-angle spinning (MAS) NMR experiments for probing (15)N-(17)O dipolar and J couplings are presented for [(2)H(NH(3)),1-(13)C,(15)N,(17)O(2)]glycine.(2)HCl and [(15)N(2),(17)O(2)]uracil. Two-dimensional (15)N-(17)O correlation spectra are obtained using the R(3)-HMQC experiment; for glycine.(2)HCl, the intensity of the resolved peaks for the CO and C-O(2)H (17)O resonances corresponds to the relative magnitude of the respective (15)N-(17)O dipolar couplings. (17)O-(15)N REDOR curves are presented for glycine.(2)HCl; fits of the initial buildup (DeltaS/S < 0.2) yield effective dipolar couplings in agreement with (+/-20%) the root-sum-squared dipolar couplings determined from the crystal structure. Experimental (15)N-(17)O REAPDOR curves for the (15)N resonances in glycine.(2)HCl and uracil fit well to the universal curve presented by Goldbourt et al. (J. Am. Chem. Soc. 2003, 125, 11194). Heteronuclear (13)C-(17)O and (15)N-(17)O J couplings were experimentally determined from fits of the quotient of the integrated intensity obtained in a heteronuclear and a homonuclear spin-echo experiment, S(Q)(tau) = S(HET)(tau)/S(HOM)(tau). For glycine.(2)HCl, (1)J(CO) was determined as 24.7 +/- 0.2 and 25.3 +/- 0.3 Hz for the CO and C-O(2)H resonances, respectively, while for uracil, the average of the two NH...O hydrogen-bond-mediated J couplings was determined as 5.1 +/- 0.6 Hz. In addition, two-bond intramolecular J couplings, (2)J(OO) = 8.8 +/- 0.9 Hz and (2)J(N1,N3) = 2.7 +/- 0.1 Hz, were determined for glycine.(2)HCl and uracil, respectively. Excellent agreement was found with J couplings calculated using the CASTEP code using geometrically optimized crystal structures for glycine.HCl [(1)J(CO)(CO) = 24.9 Hz, (1)J(CO)(COH) = 27.5 Hz, (2)J(OO) = 7.9 Hz] and uracil [(2h)J(N1,O4) = 6.1 Hz, (2h)J(N3,O4) = 4.6 Hz, (2)J(N1,N3) = 2.7 Hz].


Cell | 2017

Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains

Dylan T. Murray; Masato Kato; Yi Lin; Kent R. Thurber; Ivan Hung; Steven L. McKnight; Robert Tycko

Polymerization and phase separation of proteins containing low-complexity (LC) domains are important factors in gene expression, mRNA processing and trafficking, and localization of translation. We have used solid-state nuclear magnetic resonance methods to characterize the molecular structure of self-assembling fibrils formed by the LC domain of the fused in sarcoma (FUS) RNA-binding protein. From the 214-residue LC domain of FUS (FUS-LC), a segment of only 57 residues forms the fibril core, while other segments remain dynamically disordered. Unlike pathogenic amyloid fibrils, FUS-LC fibrils lack hydrophobic interactions within the core and are not polymorphic at the molecular structural level. Phosphorylation of core-forming residues by DNA-dependent protein kinase blocks binding of soluble FUS-LC to FUS-LC hydrogels and dissolves phase-separated, liquid-like FUS-LC droplets. These studies offer a structural basis for understanding LC domain self-assembly, phase separation, and regulation by post-translational modification.


Journal of the American Chemical Society | 2012

Isotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz

Ivan Hung; Lina Zhou; Frédérique Pourpoint; Clare P. Grey; Zhehong Gan

The use of a magic-angle turning and phase-adjusted spinning sideband NMR experiment to resolve and quantify the individual local environments in the high field (7)Li and (31)P NMR spectra of paramagnetic lithium-ion battery materials is demonstrated. The use of short radio frequency pulses provides an excitation bandwidth that is sufficient to cover shift anisotropy of >1 MHz in breadth, allowing isotropic and anisotropic components to be resolved.


Journal of the American Chemical Society | 2013

Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

Yun Han; Guangjin Hou; Christopher L. Suiter; Jinwoo Ahn; In-Ja L. Byeon; Andrew S. Lipton; Sarah D. Burton; Ivan Hung; Peter L. Gor’kov; Zhehong Gan; William W. Brey; David Rice; Angela M. Gronenborn; Tatyana Polenova

A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Dynamic allostery governs cyclophilin A-HIV capsid interplay

Manman Lu; Guangjin Hou; Huilan Zhang; Christopher L. Suiter; Jinwoo Ahn; In Ja L. Byeon; Juan R. Perilla; Christopher James Langmead; Ivan Hung; Peter L. Gor'kov; Zhehong Gan; William W. Brey; Christopher Aiken; Peijun Zhang; Klaus Schulten; Angela M. Gronenborn; Tatyana Polenova

Significance The mechanisms of how Cyclophilin A (CypA) regulates HIV-1 infectivity remain poorly understood. We examined the role of dynamics in capsid (CA) protein assemblies by magic-angle-spinning NMR. The assembled CA is highly dynamic. Dipolar tensors calculated from molecular dynamics trajectories are in quantitative agreement with the NMR results. Motions in the CypA loop are sequence-dependent and attenuated in the escape mutants A92E and G94D. Dynamics are similar in escape mutants and CA/CypA complex. These findings suggest that CA escapes from CypA dependence through dynamic allostery. Thus, a host factors function in HIV infectivity may not be primarily associated with a structural change of the capsid core, but with altering its dynamics, such as the reduction of motions for the CypA loop. Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone 1H-15N and 1H-13C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1s escape from CypA dependence.


Journal of Magnetic Resonance | 2010

On the practical aspects of recording wideline QCPMG NMR spectra

Ivan Hung; Zhehong Gan

The practical aspects of applying CPMG for acquisition of wideline powder patterns are examined. It is shown that most distortions/modulations of spikelet spectra can be traced to the incoherent signal averaging from multiple coherence transfer pathways. A strategy for minimizing these distortions/modulations is described. Also, a few interesting observations regarding the implementation of the wideline WURST-QCPMG experiment are presented, namely the accumulation of second-order signal phase and the effects of varying the sweep rate and rf field of chirp pulses.

Collaboration


Dive into the Ivan Hung's collaboration.

Top Co-Authors

Avatar

Zhehong Gan

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabyasachi Sen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge