Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Infante is active.

Publication


Featured researches published by Ivan Infante.


Environmental Science & Technology | 2010

Equilibrium Mercury Isotope Fractionation between Dissolved Hg(II) Species and Thiol-Bound Hg

Jan G. Wiederhold; Christopher J. Cramer; Kelly Daniel; Ivan Infante; Bernard Bourdon; Ruben Kretzschmar

Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Hg(II) chloride and nitrate solutions were equilibrated in parallel batches with varying amounts of thiol resin resulting in different fractions of thiol-bound and free Hg. Mercury isotope ratios in both fractions were analyzed by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). Theoretical equilibrium Hg isotope effects by mass-dependent fractionation (MDF) and nuclear volume fractionation (NVF) were calculated for 14 relevant Hg(II) species. The experimental data revealed that thiol-bound Hg was enriched in light Hg isotopes by 0.53 per thousand and 0.62 per thousand (delta(202)Hg) relative to HgCl(2) and Hg(OH)(2), respectively. The computational results were in excellent agreement with the experimental data indicating that a combination of MDF and NVF was responsible for the observed Hg isotope fractionation. Small mass-independent fractionation (MIF) effects (<0.1 per thousand) were observed representing one of the first experimental evidences for MIF of Hg isotopes by NVF. Our results indicate that significant equilibrium Hg isotope fractionation can occur without redox transition, and that NVF must be considered in addition to MDF to explain Hg isotope variations.


ACS Nano | 2014

Epitaxially Connected PbSe Quantum-Dot Films: Controlled Neck Formation and Optoelectronic Properties

C. S. Suchand Sandeep; Jon M. Azpiroz; Wiel H. Evers; Simon C. Boehme; Iwan Moreels; Sachin Kinge; Laurens D. A. Siebbeles; Ivan Infante; Arjan J. Houtepen

Ligand exchange is a much-used method to increase the conductivity of colloidal quantum-dot films by replacing long insulating ligands on quantum-dot surfaces with shorter ones. Here we show that while some ligands indeed replace the original ones as expected, others may be used to controllably remove the native ligands and induce epitaxial necking of specific crystal facets. In particular, we demonstrate that amines strip lead oleate from the (100) surfaces of PbSe quantum dots. This leads to necking of QDs and results in cubic superlattices of epitaxially connected QDs. The number of amine head-groups as well as the carbon chain length of linear diamines is shown to control the extent of necking. DFT calculations show that removal of Pb(oleate)2 from (100) surfaces is exothermic for all amines, but the driving force increases as monoamines < long diamines < short diamines < tetramines. The neck formation and cubic ordering results in a higher optical absorption cross section and higher charge carrier mobilities, thereby showing that the use of the proper multidentate amine molecules is a powerful tool to create supercrystals of epitaxially connected PbSe QDs with controlled electronic coupling.


Journal of Chemical Physics | 2007

A Fock space coupled cluster study on the electronic structure of the UO2, UO2+, U4+, and U5+ species

Ivan Infante; Ephraim Eliav; Marius J. Vilkas; Yasuyuki Ishikawa; Uzi Kaldor; Lucas Visscher

The ground and excited states of the UO(2) molecule have been studied using a Dirac-Coulomb intermediate Hamiltonian Fock-space coupled cluster approach (DC-IHFSCC). This method is unique in describing dynamic and nondynamic correlation energies at relatively low computational cost. Spin-orbit coupling effects have been fully included by utilizing the four-component Dirac-Coulomb Hamiltonian from the outset. Complementary calculations on the ionized systems UO(2) (+) and UO(2) (2+) as well as on the ions U(4+) and U(5+) were performed to assess the accuracy of this method. The latter calculations improve upon previously published theoretical work. Our calculations confirm the assignment of the ground state of the UO(2) molecule as a (3)Phi(2u) state that arises from the 5f(1)7s(1) configuration. The first state from the 5f(2) configuration is found above 10,000 cm(-1), whereas the first state from the 5f(1)6d(1) configuration is found at 5,047 cm(-1).


Physical Chemistry Chemical Physics | 2013

On the directionality of halogen bonding

Stefan M. Huber; Joseph D. Scanlon; Elisa Jimenez-Izal; Jesus M. Ugalde; Ivan Infante

The origin of the high directionality of halogen bonding was investigated quantum chemically by a detailed comparison of typical adducts in two different orientations: linear (most stable) and perpendicular. Energy decomposition analyses revealed that the synergy between charge-transfer interactions and Pauli repulsion are the driving forces for the directionality, while electrostatic contributions are more favourable in the less-stable, perpendicular orientation.


Chemical Communications | 2012

Unexpected trends in halogen-bond based noncovalent adducts.

Stefan M. Huber; Elisa Jimenez-Izal; Jesus M. Ugalde; Ivan Infante

Unexpected trends in the strengths of halogen-bond based adducts of CY(3)I (Y = F, Cl, Br, I) with two typical Lewis bases (chloride and trimethylamine) show that the halogen-bond donor strength (Lewis acidity) of a compound R-X is not necessarily increased with higher electronegativity of the (carbon-based) group R.


Chemistry: A European Journal | 2011

On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds.

Bess Vlaisavljevich; Pere Miró; Christopher J. Cramer; Laura Gagliardi; Ivan Infante; Stephen T. Liddle

Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η(5)-C(5)H(5))(2)(THF)LuRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)Me(5))(2)(I)ThRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)H(5))(2)YRe(η(5)-C(5)H(5))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}URe(η(5)-C(5)H(5))(2)], [Y{Ga(NArCh)(2)}{C(PPh(2)NSiH(3))(2)}(CH(3)OCH(3))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}U{Ga(NArCH)(2)}(THF)], [(η(5)-C(5)H(5))(3)UGa(η(5)-C(5)Me(5))], [Yb(η(5)-C(5)H(5)){Si(SiMe(3))(3)(THF)(2)}], [(η(5)-C(5)H(5))(3)U(SnPh(3))], [(η(5)-C(5)H(5))(3)U(SiPh(3))], and (Ph[Me]N)(3)USi(SiMe(3))(3). Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide-metal (or metal-metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.


Journal of the American Chemical Society | 2015

“Darker-than-Black” PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands

Carlo Giansante; Ivan Infante; Eduardo Fabiano; Roberto Grisorio; Gian Paolo Suranna; G. Gigli

Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inferred by density functional theory calculations; in addition, our findings suggest that the optical band gap reduction commonly observed for PbS QD solids treated with thiol-terminating ligands can be prevalently ascribed to 3p orbitals localized on anchoring sulfur atoms, which mix with the highest occupied states of the QDs. More broadly, we provide evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components.


Journal of the American Chemical Society | 2008

Is Fullerene C60 Large Enough to Host a Multiply Bonded Dimetal

Ivan Infante; Laura Gagliardi; Gustavo E. Scuseria

Some dimetal fullerenes M 2@C 60 (M = Cr, Mo, W) have been studied with computational quantum chemistry methods. The transition metal diatomic molecules Cr 2, Mo 2, W 2 form exohedral complexes with C 60, while U 2 forms a highly symmetric endohedral compound and it is placed in the center of the C 60 cavity. This highly symmetric structure is an artifact due to the small size of the C 60 cavity, which constrains U 2 at the center. If a larger cavity is used, like C 70 or C 84, U 2 preferentially binds the internal walls of the cavity and the U-U bond no longer exists.


Journal of Physical Chemistry A | 2010

Ionization energies for the actinide mono- and dioxides series, from Th to Cm: theory versus experiment.

Ivan Infante; Attila Kovács; Giovanni La Macchia; Abdul Rehaman Moughal Shahi; John K. Gibson; Laura Gagliardi

The results of a computational study with multiconfigurational quantum chemical methods on actinide monoxides (AnO) and dioxides (AnO(2)) for An = Th, Pa, U, Np, Pu, Am, and Cm, are presented. First and second ionization energies were determined and compared with experimental values, when available. The trend along the series is analyzed in terms of the electronic configurations of the various species. The agreement with experiment is excellent in most cases. Of particular interest is the first ionization of PuO(2). We applied cutting-edge theoretical methods to refine the ionization energy, but our computed data fall in the range of approximately 6 eV and not in the approximately 7 eV region as the experiment dictates. Such a system requires further computational and experimental attention.


Journal of Physical Chemistry A | 2008

Infrared spectroscopy of discrete uranyl anion complexes

Gary S. Groenewold; Anita K. Gianotto; Michael E. McIlwain; Michael J. Van Stipdonk; Michael J. Kullman; David T. Moore; Nick C. Polfer; Jos Oomens; Ivan Infante; Lucas Visscher; Bertrand Siboulet; Wibe A. de Jong

The Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm(-1) higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.

Collaboration


Dive into the Ivan Infante's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesus M. Ugalde

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Ruipérez

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Jon M. Azpiroz

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xabier Lopez

Donostia International Physics Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge