Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan K. Chu is active.

Publication


Featured researches published by Ivan K. Chu.


Journal of the American Society for Mass Spectrometry | 2001

Formation of molecular radical cations of enkephalin derivatives via collision-induced dissociation of electrospray-generated copper (II) complex ions of amines and peptides

Ivan K. Chu; Christopher F. Rodriguez; Alan C. Hopkinson; K. W. Michael Siu; Tai-Chu Lau

Fragmentation of some electrospray-generated complex ions, [63CuII(amine)M].2+, where M is an enkephalin derivative, produces the radical cation of the peptide, M.+. This ion has only been observed when M contains a tyrosyl or tryptophanyl residue plus a basic residue, typically arginyl or lysyl. A typical viable amine is diethylenetriamine. Collision-induced dissociation (CID) of the M.+ ion yields a prominent [M − 106].+ product ion for tyrosine-containing peptides, and a prominent [M − 129].+ ion for a tryptophan-containing peptide. These fragment ions are formed as a result of elimination of the tyrosyl and tryptophanyl side chains. Dissociation of these ions, in turn, produces second generation product ions, many of which are typically absent in the fragmentation of protonated peptide ions. Structures for some of these unusual ions are proposed.


Journal of the American Chemical Society | 2008

Are the Radical Centers in Peptide Radical Cations Mobile? The Generation, Tautomerism, and Dissociation of Isomeric α-Carbon-Centered Triglycine Radical Cations in the Gas Phase

Ivan K. Chu; Junfang Zhao; Minjie Xu; Shiu On Siu; Alan C. Hopkinson; K. W. Michael Siu

The mobility of the radical center in three isomeric triglycine radical cations[G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) has been investigated theoretically via density functional theory (DFT) and experimentally via tandem mass spectrometry. These radical cations were generated by collision-induced dissociations (CIDs) of Cu(II)-containing ternary complexes that contain the tripeptides YGG, GYG, and GGY, respectively (G and Y are the glycine and tyrosine residues, respectively). Dissociative electron transfer within the complexes led to observation of [Y(*)GG](+), [GY(*)G](+), and [GGY(*)](+); CID resulted in cleavage of the tyrosine side chain as p-quinomethide, yielding [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+), respectively. Interconversions between these isomeric triglycine radical cations have relatively high barriers (> or = 44.7 kcal/mol), in support of the thesis that isomerically pure [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) can be experimentally produced. This is to be contrasted with barriers < 17 kcal/mol that were encountered in the tautomerism of protonated triglycine [Rodriquez C. F. et al. J. Am. Chem. Soc. 2001, 123, 3006-3012]. The CID spectra of [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) were substantially different, providing experimental proof that initially these ions have distinct structures. DFT calculations showed that direct dissociations are competitive with interconversions followed by dissociation.


Plant Physiology | 2005

A Stilbene Synthase Gene (SbSTS1) Is Involved in Host and Nonhost Defense Responses in Sorghum

Christine K.Y. Yu; Karin Springob; Jürgen Schmidt; Ralph L. Nicholson; Ivan K. Chu; Wing Kin Yip; Clive Lo

A chalcone synthase (CHS)-like gene, SbCHS8, with high expressed sequence tag abundance in a pathogen-induced cDNA library, was identified previously in sorghum (Sorghum bicolor). Genomic Southern analysis revealed that SbCHS8 represents a single-copy gene. SbCHS8 expression was induced in sorghum mesocotyls following inoculation with Cochliobolus heterotrophus and Colletotrichum sublineolum, corresponding to nonhost and host defense responses, respectively. However, the induction was delayed by approximately 24 h when compared to the expression of at least one of the other SbCHS genes. In addition, SbCHS8 expression was not induced by light and did not occur in a tissue-specific manner. SbCHS8, together with SbCHS2, was overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) tt4 (transparent testa) mutants defective in CHS activities. SbCHS2 rescued the ability of these mutants to accumulate flavonoids in seed coats and seedlings. In contrast, SbCHS8 failed to complement the mutation, suggesting that the encoded enzyme does not function as a CHS. To elucidate their biochemical functions, recombinant proteins were assayed with different phenylpropanoid-Coenzyme A esters. Flavanones and stilbenes were detected in the reaction products of SbCHS2 and SbCHS8, respectively. Taken together, our data demonstrated that SbCHS2 encodes a typical CHS that synthesizes naringenin chalcone, which is necessary for the formation of different flavonoid metabolites. On the other hand, SbCHS8, now retermed SbSTS1, encodes an enzyme with stilbene synthase activity, suggesting that sorghum accumulates stilbene-derived defense metabolites in addition to the well-characterized 3-deoxyanthocyanidin phytoalexins.


Cellular and Molecular Neurobiology | 2012

Ethanolic extract of fructus alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish

Zaijun Zhang; Lorita C. V. Cheang; Meiwei Wang; Guohui Li; Ivan K. Chu; Zhi-Xiu Lin; Simon Ming-Yuen Lee

In an attempt to understand the neuroprotective effect of Fructus Alpinia oxyphylla (AOE) and to elucidate its underlying mechanism of action, the ethanolic extract of AOE was investigated using zebrafish and PC12 cell models. AOE prevented and restored 6-hydroxydopamine (6-OHDA)-induced dopaminergic (DA) neuron degeneration and attenuated a deficit of locomotor activity in a zebrafish (Danio rerio) model of Parkinson’s disease (PD). Treatment with AOE increased the viability of 6-OHDA-treated PC12 cells in vitro in a dose-dependent manner by attenuating cellular apoptosis. However, protocatechuic acid (PCA) and chrysin, two known polyphenol components of AOE, could not reproduce the neuroprotective activity of AOE in the PD zebrafish or PC12 cell models. A mechanistic study found that the protective effect of AOE against 6-OHDA-induced neuronal injury involved anti-inflammatory action (down-regulation of gene expression of IL-1β and TNF-α) and anti-oxidative action (inhibition of NO production and iNOS expression in PC12 cells). Moreover, the PI3K-AKT pathway might be part of the mechanism of neuroprotection of AOE. The results of this research are expected to provide a scientific rationale for the use of AOE in the treatment of PD. However, it is important that the active components that contribute to the neuroprotective action of AOE are identified and characterized.


Journal of Experimental Botany | 2010

Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum

Yegang Du; Hung Chu; Mingfu Wang; Ivan K. Chu; Clive Lo

Following inoculation with the anthracnose pathogen Colletotrichum sublineolum, seedlings of the sorghum resistant cultivar SC748-5 showed more rapid and elevated accumulation of luteolin than the susceptible cultivar BTx623. On the other hand, apigenin was the major flavone detected in infected BTx623 seedlings. Luteolin was demonstrated to show stronger inhibition of spore germination of C. sublineolum than apigenin. Because of their pathogen-inducible and antifungal nature, both flavone aglycones are considered sorghum phytoalexins. The key enzyme responsible for flavone biosynthesis has not been characterized in monocots. A sorghum pathogen-inducible gene encoding a cytochrome P450 protein (CYP93G3) in the uncharacterized CYP93G subfamily was identified. Transgenic expression of the P450 gene in Arabidopsis demonstrated that the encoded protein is a functional flavone synthase (FNS) II in planta. The sorghum gene was then termed SbFNSII. It is a single-copy gene located on chromosome 2 and the first FNSII gene characterized in a monocot. Metabolite analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in precursor ion scan mode revealed the accumulation of 2-hydroxynaringenin and 2-hydroxyeriodictyol hexosides in the transgenic Arabidopsis plants. Hence, SbFNSII appears to share a similar catalytic mechanism with the licorice and Medicago truncatula FNSIIs (CYP93B subfamily) by converting flavanones to flavone through the formation of 2-hydroxyflavanones.


Journal of the American Society for Mass Spectrometry | 2001

Characterization of the product ions from the collision-induced dissociation of argentinated peptides

Ivan K. Chu; Tamer Shoeib; Xu Guo; Christopher F. Rodriquez; Tai-Chu Lau; Alan C. Hopkinson; K. W. Michael Siu

Tandem mass spectrometry performed on a pool of 18 oligopeptides shows that the product ion spectra of argentinated peptides, the [bn + OH + Ag]+ ions and the [yn − H + Ag]+ ions bearing identical sequences are virtually identical. These observations suggest strongly that these ions have identical structures in the gas phase. The structures of argentinated glycine, glycylglycine, and glycylglycylglycine were calculated using density functional theory (DFT) at the B3LYP/DZVP level of theory; they were independently confirmed using HF/ LANL2DZ. For argentinated glycylglycylglycine, the most stable structure is one in which Ag+ is tetracoordinate and attached to the amino nitrogen and the three carbonyl oxygen atoms. Mechanisms are proposed for the fragmentation of this structure to the [b2 + OH + Ag]+ and the [y2 − H + Ag]+ ions that are consistent with all experimental observations and known calculated structures and energetics. The structures of the [b2 − H + Ag]+ and the [a2 − H + Ag]+ ions of glycylglycylglycine were also calculated using DFT. These results confirm earlier suggestions that the [b2 − H + Ag]+ ion is an argentinated oxazolone and the [a2 − H + Ag]+ an argentinated immonium ion.


Free Radical Biology and Medicine | 2015

Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease.

Zaijun Zhang; Guohui Li; Samuel S. W. Szeto; Cheong Meng Chong; Quan Quan; Chen Huang; Wei Cui; Baojian Guo; Yuqiang Wang; Yifan Han; K.W. Michael Siu; Simon Ming-Yuen Lee; Ivan K. Chu

Polypharmacology-based strategies using drug combinations with different mechanisms of action are gaining increasing attention as a novel methodology to discover potentially innovative medicines for neurodegenerative disorders. We used this approach to examine the combined neuroprotective effects of two polyphenols, protocatechuic acid (PCA) and chrysin, identified from the fruits of Alpinia oxyphylla. Our results demonstrated synergistic neuroprotective effects, with chrysin enhancing the protective effects of PCA, resulting in greater cell viability and decreased lactate dehydrogenase release from 6-hydroxydopamine-treated PC12 cells. Their combination also significantly attenuated chemically induced dopaminergic neuron loss in both zebrafish and mice. We examined the molecular mechanisms underlying these collective cytoprotective effects through proteomic analysis of treated PC12 cells, resulting in the identification of 12 regulated proteins. Two were further characterized, leading to the determination that pretreatment with PCA and chrysin resulted in (i) increased nuclear factor-erythroid 2-related factor 2 protein expression and transcriptional activity; (ii) modulation of cellular redox status with the upregulated expression of hallmark antioxidant enzymes, including heme oxygenase-1, superoxide dismutase, and catalase; and (iii) decreased levels of malondialdehyde, a known lipid peroxidation product. Treatment with PCA and chrysin also inhibited activation of nuclear factor-κB and expression of inducible nitric oxide synthase. Our findings suggest that natural products, when used in combination, can be effective potential therapeutic agents for treating diseases such as Parkinson disease. A therapy involving both PCA and chrysin exhibits its enhanced neuroprotective effects through a combination of cellular mechanisms: antioxidant cytoprotection and anti-inflammation.


Journal of the American Society for Mass Spectrometry | 2010

Fragmentation of α-Radical Cations of Arginine-Containing Peptides

Julia Laskin; Zhibo Yang; C. M. Dominic Ng; Ivan K. Chu

Fragmentation pathways of peptide radical cations, M+·, with well-defined initial location of the radical site were explored using collision-induced dissociation (CID) experiments. Peptide radical cations were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes [salen=N,N′-ethylenebis (salicylideneiminato)]. Subsequent hydrogen abstraction from the β-carbon of the side-chain followed by Cα-Cβ bond cleavage results in the loss of a neutral side chain and formation of an α-radical cation with the radical site localized on the α-carbon of the backbone. Similar CID spectra dominated by radical-driven dissociation products were obtained for a number of arginine-containing α-radicals, suggesting that for these systems radical migration precedes fragmentation. In contrast, proton-driven fragmentation dominates CID spectra of α-radicals produced via the loss of the arginine side chain. Radical-driven fragmentation of large M+· peptide radical cations is dominated by side-chain losses, formation of even-electron a-ions and odd-electron x-ions resulting from Cα-C bond cleavages, formation of odd-electron z-ions, and loss of the N-terminal residue. In contrast, charge-driven fragmentation produces even-electron y-ions and odd-electron b-ions.


Journal of the American Chemical Society | 2008

Energetics and Dynamics of Electron Transfer and Proton Transfer in Dissociation of MetalIII(salen)−Peptide Complexes in the Gas Phase

Julia Laskin; Zhibo Yang; Ivan K. Chu

Time- and collision energy-resolved surface-induced dissociation (SID) of ternary complexes of Co(III)(salen)+, Fe(III)(salen)+, and Mn(III)(salen)+ with several angiotensin peptide analogues was studied using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to perform SID experiments. Time-resolved fragmentation efficiency curves (TFECs) were modeled using an RRKM-based approach developed in our laboratory. The approach utilizes a very flexible analytical expression for the internal energy deposition function that is capable of reproducing both single-collision and multiple-collision activation in the gas phase and excitation by collisions with a surface. The energetics and dynamics of competing dissociation pathways obtained from the modeling provides important insight on the competition between proton transfer, electron transfer, loss of neutral peptide ligand, and other processes that determine gas-phase fragmentation of these model systems. Similar fragmentation behavior was obtained for various Co(III)(salen)-peptide systems of different angiotensin analogues. In contrast, dissociation pathways and relative stabilities of the complexes changed dramatically when cobalt was replaced with trivalent iron or manganese. We demonstrate that the electron-transfer efficiency is correlated with redox properties of the metal(III)(salen) complexes (Co > Fe > Mn), while differences in the types of fragments formed from the complexes reflect differences in the modes of binding between the metal-salen complex and the peptide ligand. RRKM modeling of time- and collision-energy-resolved SID data suggests that the competition between proton transfer and electron transfer during dissociation of Co(III)(salen)-peptide complexes is mainly determined by differences in entropy effects while the energetics of these two pathways are very similar.


Journal of Chromatography A | 2011

Development of online high-/low-pH reversed-phase-reversed-phase two-dimensional liquid chromatography for shotgun proteomics: A reversed-phase-strong cation exchange-reversed-phase approach

Ricky P. W. Kong; S. O. Siu; Simon My Lee; Clive Lo; Ivan K. Chu

Previously, we described an online high-/low-pH RP-RP LC system exhibiting high-throughput, automatability, and performance comparable with that of SCX-RP. Herein, we report a variant of the RP-RP platform, RP-SCX-RP, featuring an additional SCX trap column between the two LC dimensions. The SCX column in combination with the second-dimension RP can be used as an SCX-RP biphasic column for trapping peptides in the eluent from the first RP column. We evaluated the performance of the new platform through proteomic analysis of Arabidopsis thaliana chloroplast samples and mouse embryonic mouse fibroblast STO cell lysate at low-microgram levels. In general, RP-SCX-RP enhanced protein identification by allowing the detection of a larger number of hydrophilic peptides. Furthermore, the platform was useful for the quantitative analyses of crude chloroplast samples for iTRAQ applications at low-microgram levels. In addition, it allowed the online removal of sodium dodecyl sulfate and other chemicals used in excess in iTRAQ reactions, avoiding the need for time-consuming offline SCX clean-up prior to RP-RP separation. Relative to the RP-RP system, our newly developed RP-SCX-RP platform allowed the detection of a larger number of differentially expressed proteins in a crude iTRAQ-labeled chloroplast protein sample.

Collaboration


Dive into the Ivan K. Chu's collaboration.

Top Co-Authors

Avatar

Clive Lo

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Quan Quan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guohui Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi-Kit Siu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Tao Song

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. O. Siu

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge