Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan K. Dimov is active.

Publication


Featured researches published by Ivan K. Dimov.


Lab on a Chip | 2012

Digital LAMP in a sample self-digitization (SD) chip

Alexander Gansen; Alison M. Herrick; Ivan K. Dimov; Luke P. Lee; Daniel T. Chiu

This paper describes the realization of digital loop-mediated DNA amplification (dLAMP) in a sample self-digitization (SD) chip. Digital DNA amplification has become an attractive technique to quantify absolute concentrations of DNA in a sample. While digital polymerase chain reaction is still the most widespread implementation, its use in resource-limited settings is impeded by the need for thermal cycling and robust temperature control. In such situations, isothermal protocols that can amplify DNA or RNA without thermal cycling are of great interest. Here, we accomplished the successful amplification of single DNA molecules in a stationary droplet array using isothermal digital loop-mediated DNA amplification. Unlike most (if not all) existing methods for sample discretization, our design allows for automated, loss-less digitization of sample volumes on-chip. We demonstrated accurate quantification of relative and absolute DNA concentrations with sample volumes of less than 2 μl. We assessed the homogeneity of droplet size during sample self-digitization in our device, and verified that the size variation was small enough such that straightforward counting of LAMP-active droplets sufficed for data analysis. We anticipate that the simplicity and robustness of our SD chip make it attractive as an inexpensive and easy-to-operate device for DNA amplification, for example in point-of-care settings.


Science | 2013

Identification of a colonial chordate histocompatibility gene.

Ayelet Voskoboynik; Aaron M. Newman; Daniel M. Corey; Debashis Sahoo; Dmitry Pushkarev; Norma F. Neff; Benedetto Passarelli; Winston Koh; Katherine J. Ishizuka; Karla J. Palmeri; Ivan K. Dimov; Chen Keasar; H. Christina Fan; Gary L. Mantalas; Rahul Sinha; Lolita Penland; Stephen R. Quake; Irving L. Weissman

A Gene for Early Acceptance One of the fundamental properties of the immune system is the ability to distinguish self- from nonself–histocompatibility. To gain insight into the evolution and molecular basis of histocompatibility, Voskoboynik et al. (p. 384) sought to determine the genetic basis for a natural transplantation reaction that occurs in Botryllus schlosseri, a colonial urochordate. Compatibility allows vascular fusion among individuals, whereas incompatibility results in an inflammatory rejection response. A single gene determined the outcome of the reaction. Like histocompatibility genes in higher organisms, this gene is polymorphic and is expressed in the tissues that participate in the transplantation reaction. A single gene predicts transplantation compatibility reactions in the star ascidian, Botryllus schlosseri. Histocompatibility is the basis by which multicellular organisms of the same species distinguish self from nonself. Relatively little is known about the mechanisms underlying histocompatibility reactions in lower organisms. Botryllus schlosseri is a colonial urochordate, a sister group of vertebrates, that exhibits a genetically determined natural transplantation reaction, whereby self-recognition between colonies leads to formation of parabionts with a common vasculature, whereas rejection occurs between incompatible colonies. Using genetically defined lines, whole-transcriptome sequencing, and genomics, we identified a single gene that encodes self–nonself and determines “graft” outcomes in this organism. This gene is significantly up-regulated in colonies poised to undergo fusion and/or rejection, is highly expressed in the vasculature, and is functionally linked to histocompatibility outcomes. These findings establish a platform for advancing the science of allorecognition.


Lab on a Chip | 2011

Integrated microfluidic array plate (iMAP) for cellular and molecular analysis

Ivan K. Dimov; Gregor Kijanka; Younggeun Park; Jens Ducrée; Taewook Kang; Luke P. Lee

Just as the Petri dish has been invaluable to the evolution of biomedical science in the last 100 years, microfluidic cell assay platforms have the potential to change significantly the way modern biology and clinical science are performed. However, an evolutionary process of creating an efficient microfluidic array for many different bioassays is necessary. Specifically for a complete view of a cell response it is essential to incorporate cytotoxic, protein and gene analysis on a single system. Here we present a novel cellular and molecular analysis platform, which allows access to gene expression, protein immunoassay, and cytotoxicity information in parallel. It is realized by an integrated microfluidic array plate (iMAP). The iMAP enables sample processing of cells, perfusion based cell culture, effective perturbation of biologic molecules or drugs, and simultaneous, real-time optical analysis for different bioassays. The key features of the iMAP design are the interface of on-board gravity driven flow, the open access input fluid exchange and the highly efficient sedimentation based cell capture mechanism (∼100% capture rates). The operation of the device is straightforward (tube and pump free) and capable of handling dilute samples (5-cells per experiment), low reagent volumes (50 nL per reaction), and performing single cell protein and gene expression measurements. We believe that the unique low cell number and triple analysis capabilities of the iMAP platform can enable novel dynamic studies of scarce cells.


Stem cell reports | 2014

Identification of multipotent progenitors that emerge prior to hematopoietic stem cells in embryonic development.

Matthew A. Inlay; Thomas Serwold; Adriane R. Mosley; John W. Fathman; Ivan K. Dimov; Jun Seita; Irving L. Weissman

Summary Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability) gradually arise. Whereas self-renewal and engraftability have previously been examined in the embryo, multipotency has not been thoroughly addressed, especially at the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryogenesis, we developed a single-cell multipotency assay. We find that, during the initiation of definitive hematopoiesis in the embryo, a defined population of multipotent, engraftable progenitors emerges that is much more abundant within the yolk sac (YS) than the aorta-gonad-mesonephros (AGM) or fetal liver. These experiments indicate that multipotent cells appear in concert within both the YS and AGM and strongly implicate YS-derived progenitors as contributors to definitive hematopoiesis.


Nature Chemical Biology | 2016

High-throughput analysis and protein engineering using microcapillary arrays

Bob Chen; Sungwon Lim; Arvind Kannan; Spencer C. Alford; Fanny Sunden; Daniel Herschlag; Ivan K. Dimov; Thomas M. Baer; Jennifer R. Cochran

We describe a multi-purpose technology platform, termed μSCALE (Microcapillary Single Cell Analysis and Laser Extraction), that enables massively parallel, quantitative biochemical and biophysical measurements on millions of protein variants expressed from yeast or bacteria. μSCALE spatially segregates single cells within a microcapillary array, enabling repeated imaging, cell growth, and protein expression. We performed high-throughput analysis of cells and their protein products using a range of fluorescent assays, including binding affinity measurements and dynamic enzymatic assays. A precise laser-based extraction method allows rapid recovery of live clones and their genetic material from microcapillaries for further study. With μSCALE, we discovered a new antibody against a clinical cancer target, evolved an orange fluorescent protein biosensor, and engineered an enzyme with reduced sensitivity to its inhibitor. These three distinct protein analysis and engineering applications, each with unique assay requirements and different host organisms, highlight the flexibility and technical capabilities of our platform.


Biomicrofluidics | 2011

Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices

David Y. Liang; Augusto M. Tentori; Ivan K. Dimov; Luke P. Lee

Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics of degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL∕s and mean flow rates of approximately 1-1.5 nL∕s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.


Nature Communications | 2014

Discriminating cellular heterogeneity using microwell-based RNA cytometry

Ivan K. Dimov; Rong Lu; Eric P. Lee; Jun Seita; Debashis Sahoo; Seung-min Park; Irving L. Weissman; Luke P. Lee

Discriminating cellular heterogeneity is important for understanding cellular physiology. However, it is limited by the technical difficulties of single-cell measurements. Here we develop a two-stage system to determine cellular heterogeneity. In the first stage, we perform multiplex single-cell RNA cytometry in a microwell array containing over 60,000 reaction chambers. In the second stage, we use the RNA cytometry data to determine cellular heterogeneity by providing a heterogeneity likelihood score (HLS). Moreover, we use Monte-Carlo simulation and RNA cytometry data to calculate the minimum number of cells required for detecting heterogeneity. We apply this system to characterize the RNA distributions of ageing-related genes in a highly purified mouse haematopoietic stem cell population. We identify genes that reveal novel heterogeneity of these cells. We also show that changes in expression of genes such as Birc6 during ageing can be attributed to the shift of relative portions of cells in the high-expressing subgroup versus low-expressing subgroup.


Scientific Reports | 2015

Dynamic and social behaviors of human pluripotent stem cells

Smruti M. Phadnis; Nathan O. Loewke; Ivan K. Dimov; Sunil Pai; Christine E. Amwake; Olav Solgaard; Thomas M. Baer; Bertha Chen; Renee A. Reijo Pera

Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored.


ACS Chemical Biology | 2017

Engineering High Affinity Protein–Protein Interactions Using a High-Throughput Microcapillary Array Platform

Sungwon Lim; Bob Chen; Mihalis Kariolis; Ivan K. Dimov; Thomas M. Baer; Jennifer R. Cochran

Affinity maturation of protein-protein interactions requires iterative rounds of protein library generation and high-throughput screening to identify variants that bind with increased affinity to a target of interest. We recently developed a multipurpose protein engineering platform, termed μSCALE (Microcapillary Single Cell Analysis and Laser Extraction). This technology enables high-throughput screening of libraries of millions of cell-expressing protein variants based on their binding properties or functional activity. Here, we demonstrate the first use of the μSCALE platform for affinity maturation of a protein-protein binding interaction. In this proof-of-concept study, we engineered an extracellular domain of the Axl receptor tyrosine kinase to bind tighter to its ligand Gas6. Within 2 weeks, two iterative rounds of library generation and screening resulted in engineered Axl variants with a 50-fold decrease in kinetic dissociation rate, highlighting the use of μSCALE as a new tool for directed evolution.


international conference on micro electro mechanical systems | 2009

Monolithic Centrifugal Microfluidic Platform for Bacteria Capture and Concentration, Lysis, Nucleic-Acid Amplification, and Real-Time Detection

Jose L. Garcia-Cordero; Ivan K. Dimov; Justin O'Grady; Jens Ducrée; Thomas Barry; Antonio J. Ricco

We report the design, fabrication, and characterization of a polymer centrifugal microfluidic system for the specific detection of bacterial pathogens. This single-cartridge platform integrates bacteria capture and concentration, supernatant solution removal, lysis, and nucleic-acid sequence-based amplification (NASBA) in a single unit. The unit is fabricated using multilayer lamination and consists of five different polymer layers. Bacteria capture and concentration are accomplished by sedimentation in five minutes. Centrifugation forces also drive the subsequent steps. A wax valve is integrated in the cartridge to enable high-speed centrifugation. Oil is used to prevent evaporation during reactions requiring thermal cycling. Device functionality was demonstrated by real-time detection of E. coli from a 200-¿L sample.

Collaboration


Dive into the Ivan K. Dimov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke P. Lee

Dublin City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asif Riaz

Dublin City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge