Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan O. Rosas is active.

Publication


Featured researches published by Ivan O. Rosas.


Journal of Experimental Medicine | 2010

Bleomycin and IL-1β–mediated Pulmonary Fibrosis is IL-17A Dependent

Mark S. Wilson; Satish K. Madala; Thirumalai R. Ramalingam; Bernadette R. Gochuico; Ivan O. Rosas; Allen W. Cheever; Thomas A. Wynn

Idiopathic pulmonary fibrosis (IPF) is a destructive inflammatory disease with limited therapeutic options. To better understand the inflammatory responses that precede and concur with collagen deposition, we used three models of pulmonary fibrosis and identify a critical mechanistic role for IL-17A. After exposure to bleomycin (BLM), but not Schistosoma mansoni eggs, IL-17A produced by CD4+ and γδ+ T cells induced significant neutrophilia and pulmonary fibrosis. Studies conducted with C57BL/6 il17a−/− mice confirmed an essential role for IL-17A. Mechanistically, using ifnγ−/−, il10−/−, il10−/−il12p40−/−, and il10−/−il17a−/− mice and TGF-β blockade, we demonstrate that IL-17A–driven fibrosis is suppressed by IL-10 and facilitated by IFN-γ and IL-12/23p40. BLM-induced IL-17A production was also TGF-β dependent, and recombinant IL-17A–mediated fibrosis required TGF-β, suggesting cooperative roles for IL-17A and TGF-β in the development of fibrosis. Finally, we show that fibrosis induced by IL-1β, which mimics BLM-induced fibrosis, is also highly dependent on IL-17A. IL-17A and IL-1β were also increased in the bronchoalveolar lavage fluid of patients with IPF. Together, these studies identify a critical role for IL-17A in fibrosis, illustrating the potential utility of targeting IL-17A in the treatment of drug and inflammation-induced fibrosis.


PLOS Medicine | 2008

MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis

Ivan O. Rosas; Thomas J. Richards; Kazuhisa Konishi; Yingze Zhang; Kevin J.C. Gibson; Anna Lokshin; Kathleen O. Lindell; Jose Cisneros; Sandra D. MacDonald; Annie Pardo; Frank C. Sciurba; James H. Dauber; Moisés Selman; Bernadette R. Gochuico; Naftali Kaminski

Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease associated with substantial morbidity and mortality. The objective of this study was to determine whether there is a peripheral blood protein signature in IPF and whether components of this signature may serve as biomarkers for disease presence and progression. Methods and Findings We analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and in the plasma of 53 control individuals. We identified a combinatorial signature of five proteins—MMP7, MMP1, MMP8, IGFBP1, and TNFRSF1A—that was sufficient to distinguish patients from controls with a sensitivity of 98.6% (95% confidence interval [CI] 92.7%–100%) and specificity of 98.1% (95% CI 89.9%–100%). Increases in MMP1 and MMP7 were also observed in lung tissue and bronchoalveolar lavage fluid obtained from IPF patients. MMP7 and MMP1 plasma concentrations were not increased in patients with chronic obstructive pulmonary disease or sarcoidosis and distinguished IPF compared to subacute/chronic hypersensitivity pneumonitis, a disease that may mimic IPF, with a sensitivity of 96.3% (95% CI 81.0%–100%) and specificity of 87.2% (95% CI 72.6%–95.7%). We verified our results in an independent validation cohort composed of patients with IPF, familial pulmonary fibrosis, subclinical interstitial lung disease (ILD), as well as with control individuals. MMP7 and MMP1 concentrations were significantly higher in IPF patients compared to controls in this cohort. Furthermore, MMP7 concentrations were elevated in patients with subclinical ILD and negatively correlated with percent predicted forced vital capacity (FVC%) and percent predicted carbon monoxide diffusing capacity (DLCO%). Conclusions Our experiments provide the first evidence for a peripheral blood protein signature in IPF to our knowledge. The two main components of this signature, MMP7 and MMP1, are overexpressed in the lung microenvironment and distinguish IPF from other chronic lung diseases. Additionally, increased MMP7 concentration may be indicative of asymptomatic ILD and reflect disease progression.


The New England Journal of Medicine | 2011

Lung volumes and emphysema in smokers with interstitial lung abnormalities.

George R. Washko; Gary M. Hunninghake; Isis E. Fernandez; Mizuki Nishino; Yuka Okajima; Tsuneo Yamashiro; James C. Ross; Raúl San José Estépar; David A. Lynch; John M. Brehm; Katherine P. Andriole; Alejandro A. Diaz; Ramin Khorasani; Katherine D'Aco; Frank C. Sciurba; Edwin K. Silverman; Hiroto Hatabu; Ivan O. Rosas

BACKGROUND Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. METHODS We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. RESULTS Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; P<0.001) and a lower percentage of emphysema defined by lung-attenuation thresholds of -950 Hounsfield units (-3%; 95% CI, -4 to -2; P<0.001) and -910 Hounsfield units (-10%; 95% CI, -12 to -8; P<0.001). As compared with participants without interstitial lung abnormalities, those with abnormalities were more likely to have a restrictive lung deficit (total lung capacity <80% of the predicted value; odds ratio, 2.3; 95% CI, 1.4 to 3.7; P<0.001) and were less likely to meet the diagnostic criteria for chronic obstructive pulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. CONCLUSIONS In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).


JAMA Internal Medicine | 2008

Progressive Preclinical Interstitial Lung Disease in Rheumatoid Arthritis

Bernadette R. Gochuico; Nilo A. Avila; Catherine Chow; Levi J. Novero; Hai-Ping Wu; Ping Ren; Sandra D. MacDonald; William D. Travis; Mario Stylianou; Ivan O. Rosas

BACKGROUND Early detection and treatment for interstitial lung disease (ILD) in patients with rheumatoid arthritis (RA) may ameliorate disease progression. The objective of this study was to identify asymptomatic lung disease and potential therapeutic targets in patients having RA and preclinical ILD (RA-ILD). METHODS Sixty-four adults with RA and 10 adults with RA and pulmonary fibrosis (RAPF) were referred to the National Institutes of Health, Bethesda, Maryland, and underwent high-resolution computed tomography (HRCT) and pulmonary physiology testing. Proteins capable of modulating fibrosis were quantified in alveolar fluid. RESULTS Twenty-one of 64 patients (33%) having RA without dyspnea or cough had preclinical ILD identified by HRCT. Compared with patients without lung disease, patients with RA-ILD had statistically significantly longer histories of cigarette smoking (P< .001), increased frequencies of crackles (P= .02), higher alveolar-arterial oxygen gradients (P= .004), and higher HRCT scores (P< .001). The HRCT abnormalities progressed in 12 of 21 patients (57%) with RA-ILD. The alveolar concentrations of platelet-derived growth factor-AB and platelet-derived growth factor-BB were statistically significantly higher in patients having RA-ILD (mean [SE], 497.3 [78.6] and 1473 [264] pg/mL, respectively) than in patients having RA without ILD (mean [SE], 24.9 [42.4] and 792.7 [195.0] pg/mL, respectively) (P< .001 and P=.047, respectively). The concentrations of interferon gamma and transforming growth factor beta(2) were statistically significantly lower in patients having RAPF (mean [SE], 5.59 [1.11] pg/mL and 0.94 [0.46] ng/mL, respectively) than in patients having RA without ILD (mean [SE], 14.1 [1.9] pg/mL and 2.30 [0.39] ng/mL, respectively) (P=.001 and P=.006, respectively) or with preclinical ILD (mean [SD], 11.4 [2.6] pg/mL and 3.63 [0.66] ng/mL, respectively) (P=.04 and P=.007, respectively). Compared with patients having stable RA-ILD, patients having progressive RA-ILD had statistically significantly higher frequencies of treatment using methotrexate and higher alveolar concentrations of interferon gamma and transforming growth factor beta(1) (P=.046, P=.04, and P=.04, respectively). CONCLUSIONS Asymptomatic preclinical ILD, which is detectable by HRCT, may be prevalent and progressive among patients having RA. Cigarette smoking seems to be associated with preclinical ILD in patients having RA, and treatment using methotrexate may be a risk factor for progression of preclinical ILD. Quantification of alveolar proteins indicates that potential pathogenic mechanisms seem to differ in patients having RA-ILD and symptomatic RAPF.


PLOS ONE | 2012

Autophagy in idiopathic pulmonary fibrosis.

Avignat Patel; Ling Lin; Alexander Geyer; Jeffrey A. Haspel; Chang Hyeok An; Jiaofei Cao; Ivan O. Rosas; Danielle Morse

Background Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis. Methods Human lung tissues from patients with IPF were analyzed for autophagy markers and modulating proteins using western blotting, confocal microscopy and transmission electron microscopy. To study the effects of TGF-β1 on autophagy, human lung fibroblasts were monitored by fluorescence microscopy and western blotting. In vivo experiments were done using the bleomycin-induced fibrosis mouse model. Results Lung tissues from IPF patients demonstrate evidence of decreased autophagic activity as assessed by LC3, p62 protein expression and immunofluorescence, and numbers of autophagosomes. TGF-β1 inhibits autophagy in fibroblasts in vitro at least in part via activation of mTORC1; expression of TIGAR is also increased in response to TGF-β1. In the bleomycin model of pulmonary fibrosis, rapamycin treatment is antifibrotic, and rapamycin also decreases expression of á-smooth muscle actin and fibronectin by fibroblasts in vitro. Inhibition of key regulators of autophagy, LC3 and beclin-1, leads to the opposite effect on fibroblast expression of á-smooth muscle actin and fibronectin. Conclusion Autophagy is not induced in pulmonary fibrosis despite activation of pathways known to promote autophagy. Impairment of autophagy by TGF-β1 may represent a mechanism for the promotion of fibrogenesis in IPF.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis.

Fei Liu; David Lagares; Kyoung Moo Choi; Lauren Stopfer; Aleksandar Marinkovic; Vladimir Vrbanac; Clemens K. Probst; Samantha E. Hiemer; Thomas H. Sisson; Jeffrey C. Horowitz; Ivan O. Rosas; Carol A. Feghali-Bostwick; Xaralabos Varelas; Andrew M. Tager; Daniel J. Tschumperlin

Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis.


PLOS Medicine | 2013

Circulating Mitochondrial DNA in Patients in the ICU as a Marker of Mortality: Derivation and Validation

Kiichi Nakahira; Sun-Young Kyung; Angela J. Rogers; Lee Gazourian; Sojung Youn; Anthony F. Massaro; Carolina Quintana; Juan C. Osorio; Zhaoxi Wang; Yang Zhao; Laurie Lawler; Jason D. Christie; Nuala J. Meyer; Finnian R. Mc Causland; Sushrut S. Waikar; Aaron B. Waxman; Raymond T. Chung; Raphael Bueno; Ivan O. Rosas; Rebecca M. Baron; David C. Christiani; Gary M. Hunninghake; Augustine M. K. Choi

In this paper, Choi and colleagues analyzed levels of mitochondrial DNA in two prospective observational cohort studies and found that increased mtDNA levels are associated with ICU mortality, and improve risk prediction in medical ICU patients. The data suggests that mtDNA could serve as a viable plasma biomarker in MICU patients.


The New England Journal of Medicine | 2013

MUC5B Promoter Polymorphism and Interstitial Lung Abnormalities

Gary M. Hunninghake; Hiroto Hatabu; Yuka Okajima; Wei Gao; Dupuis J; Jeanne C. Latourelle; Mizuki Nishino; Tetsuro Araki; Oscar E. Zazueta; Sila Kurugol; James C. Ross; San José Estépar R; Elissa Murphy; Mark P. Steele; James E. Loyd; Marvin I. Schwarz; Tasha E. Fingerlin; Ivan O. Rosas; George R. Washko; George T. O'Connor; David A. Schwartz

BACKGROUND A common promoter polymorphism (rs35705950) in MUC5B, the gene encoding mucin 5B, is associated with idiopathic pulmonary fibrosis. It is not known whether this polymorphism is associated with interstitial lung disease in the general population. METHODS We performed a blinded assessment of interstitial lung abnormalities detected in 2633 participants in the Framingham Heart Study by means of volumetric chest computed tomography (CT). We evaluated the relationship between the abnormalities and the genotype at the rs35705950 locus. RESULTS Of the 2633 chest CT scans that were evaluated, interstitial lung abnormalities were present in 177 (7%). Participants with such abnormalities were more likely to have shortness of breath and chronic cough and reduced measures of total lung and diffusion capacity, as compared with participants without such abnormalities. After adjustment for covariates, for each copy of the minor rs35705950 allele, the odds of interstitial lung abnormalities were 2.8 times greater (95% confidence interval [CI], 2.0 to 3.9; P<0.001), and the odds of definite CT evidence of pulmonary fibrosis were 6.3 times greater (95% CI, 3.1 to 12.7; P<0.001). Although the evidence of an association between the MUC5B genotype and interstitial lung abnormalities was greater among participants who were older than 50 years of age, a history of cigarette smoking did not appear to influence the association. CONCLUSIONS The MUC5B promoter polymorphism was found to be associated with interstitial lung disease in the general population. Although this association was more apparent in older persons, it did not appear to be influenced by cigarette smoking. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT00005121.).


Journal of Heart and Lung Transplantation | 2001

Patterns and Significance of Exhaled-Breath Biomarkers in Lung Transplant Recipients with Acute Allograft Rejection

Sean M. Studer; Jonathan B. Orens; Ivan O. Rosas; Jerry A. Krishnan; K.A Cope; S.C Yang; John V. Conte; P.B Becker; T.H Risby

BACKGROUND Obliterative bronchiolitis (OB) remains one of the leading causes of death in lung transplant recipients after 2 years, and acute rejection (AR) of lung allograft is a major risk factor for OB. Treatment of AR may reduce the incidence of OB, although diagnosis of AR often requires bronchoscopic lung biopsy. In this study, we evaluated the utility of exhaled-breath biomarkers for the non-invasive diagnosis of AR. METHODS We obtained breath samples from 44 consecutive lung transplant recipients who attended ambulatory follow-up visits for the Johns Hopkins Lung Transplant Program. Bronchoscopy within 7 days of their breath samples showed histopathology in 21 of these patients, and we included them in our analysis. We measured hydrocarbon markers of pro-oxidant events (ethane and 1-pentane), isoprene, acetone, and sulfur-containing compounds (hydrogen sulfide and carbonyl sulfide) in exhaled breath and compared their levels to the lung histopathology, graded as stable (non-rejection) or AR. None of the study subjects were diagnosed with OB or infection at the time of the clinical bronchoscopy. RESULTS We found no significant difference in exhaled levels of hydrocarbons, acetone, or hydrogen sulfide between the stable and AR groups. However, we did find significant increase in exhaled carbonyl sulfide (COS) levels in AR subjects compared with stable subjects. We also observed a trend in 7 of 8 patients who had serial sets of breath and histopathology data that supported a role for COS as a breath biomarker of AR. CONCLUSIONS This study demonstrated elevations in exhaled COS levels in subjects with AR compared with stable subjects, suggesting a diagnostic role for this non-invasive biomarker. Further exploration of breath analysis in lung transplant recipients is warranted to complement fiberoptic bronchoscopy and obviate the need for this procedure in some patients.


Journal of Biological Chemistry | 2009

Oxidative Stress Alters Syndecan-1 Distribution in Lungs with Pulmonary Fibrosis *□

Corrine R. Kliment; Judson M. Englert; Bernadette R. Gochuico; Guoying Yu; Naftali Kaminski; Ivan O. Rosas; Tim D. Oury

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.

Collaboration


Dive into the Ivan O. Rosas's collaboration.

Top Co-Authors

Avatar

Gary M. Hunninghake

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Souheil El-Chemaly

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George R. Washko

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hiroto Hatabu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary J. Goldberg

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

James C. Ross

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tracy J. Doyle

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Danielle Morse

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge