Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Orlandi is active.

Publication


Featured researches published by Ivan Orlandi.


Yeast | 1996

Candida albicans homologue of GGP1/GAS1 gene is functional in Saccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment

Marina Vai; Ivan Orlandi; Paola Cavadini; Lilia Alberghina; Laura Popolo

The GGP1/GAS1/CWH52 gene of Saccharomyces cerevisiae encodes a major exocellular 115 kDa glycoprotein (gp115) anchored to the plasma membrane through a glycosylphosphatidylinositol (GPI). The function of gp115 is still unknown but the analysis of null mutants suggests a possible role in the control of morphogenesis. PHR1 gene isolated from Candida alibicans is homologous to the GGP1 gene. In this report we have analysed the ability of PHR1 to complement a ggp1Δ mutation in S. cerevisiae. The expression of PHR1 controlled by its natural promoter or by the GGP1 promoter has been studied. In both cases we have observed a complete complementation of the mutant phenotype. Moreover, immunological analysis has revealed that PHR1 in budding yeast gives rise to a 75–80 kDa protein anchored to the membrane through a GPI, indicating that the signal for GPI attachment present in the C. albicans gene product is functional in S. cerevisiae.


Applied and Environmental Microbiology | 2000

Improved Secretion of Native Human Insulin-Like Growth Factor 1 from gas1 Mutant Saccharomyces cerevisiae Cells

Marina Vai; Luca Brambilla; Ivan Orlandi; Nicola Rota; Bianca Maria Ranzi; Lilia Alberghina; Danilo Porro

ABSTRACT We studied the secretion of recombinant human insulin-like growth factor 1 (rhIGF-1) from transformed yeast cells. The hIGF-1gene was fused to the mating factor α prepro- leader sequence under the control of the constitutive ACT1 promoter. We found that the inactivation of the GAS1 gene in the host strain led to a supersecretory phenotype yielding a considerable increase, from 8 to 55 mg/liter, in rhIGF-1 production.


Biotechnology Advances | 2009

Systems biology of the cell cycle of Saccharomyces cerevisiae: From network mining to system-level properties

Lilia Alberghina; Paola Coccetti; Ivan Orlandi

Following a brief description of the operational procedures of systems biology (SB), the cell cycle of budding yeast is discussed as a successful example of a top-down SB analysis. After the reconstruction of the steps that have led to the identification of a sizer plus timer network in the G1 to S transition, it is shown that basic functions of the cell cycle (the setting of the critical cell size and the accuracy of DNA replication) are system-level properties, detected only by integrating molecular analysis with modelling and simulation of their underlying networks. A detailed network structure of a second relevant regulatory step of the cell cycle, the exit from mitosis, derived from extensive data mining, is constructed and discussed. To reach a quantitative understanding of how nutrients control, through signalling, metabolism and transcription, cell growth and cycle is a very relevant aim of SB. Since we know that about 900 gene products are required for cell cycle execution and control in budding yeast, it is quite clear that a purely systematic approach would require too much time. Therefore lines for a modular SB approach, which prioritises molecular and computational investigations for faster cell cycle understanding, are proposed. The relevance of the insight coming from the cell cycle SB studies in developing a new framework for tackling very complex biological processes, such as cancer and aging, is discussed.


Biochimica et Biophysica Acta | 2010

Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing

Ivan Orlandi; Maurizio Bettiga; Lilia Alberghina; Thomas Nyström; Marina Vai

Carbonylation of proteins is an irreversible oxidative damage that increases during both chronological and replicative yeast aging. In the latter, a spatial protein quality control system that relies on Sir2 is responsible for the asymmetrical damage segregation in the mother cells. Proper localization of Sir2 on chromatin depends on the deubiquitinating enzyme Ubp10, whose loss of function deeply affects the recombination and gene-silencing activities specific to Sir2. Here, we have analyzed the effects of SIR2 and UBP10 inactivations on carbonylated protein patterns obtained in two aging models such as stationary phase cells and size-selected old mother ones. In line with the endogenous situation of higher oxidative stress resulting from UBP10 inactivation, an increase of protein carbonylation has been found in the ubp10Delta stationary phase cells compared with sir2Delta ones. Moreover, Calorie Restriction had a salutary effect for both mutants by reducing carbonylated proteins accumulation. Remarkably, in the replicative aging model, whereas SIR2 inactivation resulted in a failure to establish damage asymmetry, the Sir2-dependent damage inheritance is maintained in the ubp10Delta mutant which copes with the increased oxidative damage by retaining it in the mother cells. This indicates that both Ubp10 and a correct association of Sir2 with the silenced chromatin are not necessary in such a process but also suggests that additional Sir2 activities on non-chromatin substrates are involved in the establishment of damage asymmetry.


Biochimica et Biophysica Acta | 2013

Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors

Nadia Casatta; Alessandra Porro; Ivan Orlandi; Luca Brambilla; Marina Vai

Yeast chronological aging is regarded as a model for aging of mammalian post-mitotic cells. It refers to changes occurring in stationary phase cells over a relatively long period of time. How long these cells can survive in such a non-dividing state defines the chronological lifespan. Several factors influence cell survival including two well known normal by-products of yeast glucose fermentation such as ethanol and acetic acid. In fact, the presence in the growth medium of these C2 compounds has been shown to limit the chronological lifespan. In the chronological aging paradigm, a pro-aging role has also emerged for the deacetylase Sir2, the founding member of the Sirtuin family, whose loss of function increases the depletion of extracellular ethanol by an unknown mechanism. Here, we show that lack of Sir2 strongly influences carbon metabolism. In particular, we point out a more efficient acetate utilization which in turn may have a stimulatory effect on ethanol catabolism. This correlates with an enhanced glyoxylate/gluconeogenic flux which is fuelled by the acetyl-CoA produced from the acetate activation. Thus, when growth relies on a respiratory metabolism such as that on ethanol or acetate, SIR2 inactivation favors growth. Moreover, in the chronological aging paradigm, the increase in the acetate metabolism implies that sir2Δ cells avoid acetic acid accumulation in the medium and deplete ethanol faster; consequently pro-aging extracellular signals are reduced. In addition, an enhanced gluconeogenesis allows replenishment of intracellular glucose stores which may be useful for better long-term cell survival.


Biochimica et Biophysica Acta | 2010

Oxidative stress and alterations in actin cytoskeleton trigger glutathione efflux in Saccharomyces cerevisiae.

Silvia Bradamante; Alessandro Villa; Silvia Versari; Livia Barenghi; Ivan Orlandi; Marina Vai

A marked deficiency in glutathione (GSH), the most abundant antioxidant in living systems, plays a major role in aging and the pathogenesis of diseases ranging from neurological disorders to early atherosclerosis and the impairment of various immunological functions. In an attempt to shed light on GSH homeostasis, we carried out the space experiment SCORE (Saccharomyces cerevisiae oxidative stress response evaluation) during the FOTON-M3 mission. Microgravity and hyperoxic conditions induced an enormous extracellular release of GSH from S. cerevisiae cells (≈40% w/dw), changed the distribution of the buds, and activated the high osmolarity glycerol (HOG) and cell integrity/PKC pathways, as well as protein carbonylation. The results from the single spaceflight experiment were validated by a complete set of experiments under conditions of simulated microgravity and indicate that cytoskeletal alterations are mainly responsible for the observed effects. The results of ground experiments in which we induced cytoskeletal modifications by means of treatment with dihydrocytochalasin B (DHCB), a potent inhibitor of actin polymerisation, or (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632), a selective ROCK (Rho-associated coiled-coil forming protein serine/threonine kinase) inhibitor, confirmed the role of actin in GSH efflux. We also found that the GSH release can be inhibited using the potent chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB).


Fems Yeast Research | 2009

Characterization and functional analysis of the β‐1,3‐glucanosyltransferase 3 of the human pathogenic fungus Paracoccidioides brasiliensis

Nadya da Silva Castro; Kelly Pacheco de Castro; Ivan Orlandi; Luciano dos Santos Feitosa; Lívia Kmetzsch Rosa e Silva; Marilene Henning Vainstein; Sônia Nair Báo; Marina Vai; Célia Maria de Almeida Soares

The fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic granulomatous mycosis prevalent in Latin America. In an effort to elucidate the molecular mechanisms involved in fungus cell wall assembly and morphogenesis, beta-1,3-glucanosyltransferase 3 (PbGel3p) is presented here. PbGel3p presented functional similarity to the glucan-elongating/glycophospholipid-anchored surface/pH-regulated /essential for pseudohyphal development protein families, which are involved in fungal cell wall biosynthesis and morphogenesis. The full-length cDNA and gene were obtained. Southern blot and in silico analysis suggested that there is one copy of the gene in P. brasiliensis. The recombinant PbGel3p was overexpressed in Escherichia coli, and a polyclonal antibody was obtained. The PbGEL3 mRNA, as well as the protein, was detected at the highest level in the mycelium phase. The protein was immunolocalized at the surface in both the mycelium and the yeast phases. We addressed the potential role of PbGel3p in cell wall biosynthesis and morphogenesis by assessing its ability to rescue the phenotype of the Saccharomyces cerevisiae gas1Delta mutant. The results indicated that PbGel3p is a cell wall-associated protein that probably works as a beta-1,3-glucan elongase capable of mediating fungal cell wall integrity.


Marine Environmental Research | 2013

Exploring the effect of salinity changes on the levels of Hsp60 in the tropical coral Seriatopora caliendrum.

Davide Seveso; Simone Montano; Giovanni Strona; Ivan Orlandi; Paolo Galli; Marina Vai

Osmotic stress represents a limiting physical parameter for marine organisms and especially for sessile scleractinian corals which are known to be basically stenohaline and osmoconformers. The salinity changes may cause important cellular damage since corals lack any developed physiological regulatory system. One mechanism of reaction to deleterious conditions is the rapid increase of the induction of heat shock proteins. This study highlights the modulation of the expression of a mitochondrial heat shock protein, such as the chaperonin Hsp60, in the animal tissues of the scleractinian coral Seriatopora caliendrum under three salinity scenarios (hypersalinity of 45 ppt, hyposalinity of 25 ppt and extreme hyposalinity of 15 ppt). The study was performed during the time course of a 2-day period and accompanied also by the assessment of the coral health condition. For each salinity stress S. caliendrum responds differently at the morphological and cellular levels, since the Hsp60 exhibited specific patterns of expression and the coral showed different tissue appearance. Furthermore, the response reflects the severity and exposure length of the disturbance. However, the results indicate that S. caliendrum seems able to tolerates high salinity better than low salinity. In particular, in extreme hyposalinity conditions, a considerable gradual down-regulation of Hsp60 was detected accompanied by necrosis and degradation of the coral tissues. The study suggests that Hsp60 may be involved in the mechanisms of cellular response to stress caused by exposure to adverse salinity.


Frontiers in Oncology | 2012

Lack of Ach1 CoA-Transferase Triggers Apoptosis and Decreases Chronological Lifespan in Yeast

Ivan Orlandi; Nadia Casatta; Marina Vai

ACH1 encodes a mitochondrial enzyme of Saccharomyces cerevisiae endowed with CoA-transferase activity. It catalyzes the CoASH transfer from succinyl-CoA to acetate generating acetyl-CoA. It is known that ACH1 inactivation results in growth defects on media containing acetate as a sole carbon and energy source which are particularly severe at low pH. Here, we show that chronological aging ach1Δ cells which accumulate a high amount of extracellular acetic acid display a reduced chronological lifespan. The faster drop of cell survival is completely abrogated by alleviating the acid stress either by a calorie restricted regimen that prevents acetic acid production or by transferring chronologically aging mutant cells to water. Moreover, the short-lived phenotype of ach1Δ cells is accompanied by reactive oxygen species accumulation, severe mitochondrial damage, and an early insurgence of apoptosis. A similar pattern of endogenous severe oxidative stress is observed when ach1Δ cells are cultured using acetic acid as a carbon source under acidic conditions. On the whole, our data provide further evidence of the role of acetic acid as cell-extrinsic mediator of cell death during chronological aging and highlight a primary role of Ach1 enzymatic activity in acetic acid detoxification which is important for mitochondrial functionality.


Genetics | 2006

The Histone Deubiquitinating Enzyme Ubp10 Is Involved in rDNA Locus Control in Saccharomyces cerevisiae by Affecting Sir2p Association

Luciano Calzari; Ivan Orlandi; Lilia Alberghina; Marina Vai

Histone modifications influence chromatin structure and thus regulate the accessibility of DNA to replication, recombination, repair, and transcription. We show here that the histone deubiquitinating enzyme Ubp10 contributes to the formation/maintenance of silenced chromatin at the rDNA by affecting Sir2p association.

Collaboration


Dive into the Ivan Orlandi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lilia Alberghina

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge