Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan P. Moskowitz is active.

Publication


Featured researches published by Ivan P. Moskowitz.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis.

Yuanyi Feng; Ming Hui Chen; Ivan P. Moskowitz; Ashley M. Mendonza; Luis Vidali; Fumihiko Nakamura; David J. Kwiatkowski; Christopher A. Walsh

Mutations in the human Filamin A (FLNA) gene disrupt neuronal migration to the cerebral cortex and cause cardiovascular defects. Complete loss of Flna in mice results in embryonic lethality with severe cardiac structural defects involving ventricles, atria, and outflow tracts, as well as widespread aberrant vascular patterning. Despite these widespread developmental defects, migration and motility of many cell types does not appear to be affected. Instead, Flna-null embryos display abnormal epithelial and endothelial organization and aberrant adherens junctions in developing blood vessels, heart, brain, and other tissues. Essential roles for FLNA in intercellular junctions provide a mechanism for the diverse developmental defects seen in patients with FLNA mutations.


Cell | 2007

A Molecular Pathway Including Id2, Tbx5, and Nkx2-5 Required for Cardiac Conduction System Development

Ivan P. Moskowitz; Jae B. Kim; Meredith L. Moore; Cordula M. Wolf; Michael A. Peterson; Jay Shendure; Marcelo A. Nobrega; Yoshifumi Yokota; Charles I. Berul; Seigo Izumo; Jonathan G. Seidman; Christine E. Seidman

The cardiac conduction system is an anatomically discrete segment of specialized myocardium that initiates and propagates electrical impulses to coordinate myocardial contraction. To define the molecular composition of the mouse ventricular conduction system we used microdissection and transcriptional profiling by serial analysis of gene expression (SAGE). Conduction-system-specific expression for Id2, a member of the Id gene family of transcriptional repressors, was identified. Analyses of Id2-deficient mice demonstrated structural and functional conduction system abnormalities, including left bundle branch block. A 1.2 kb fragment of the Id2 promoter proved sufficient for cooperative regulation by Nkx2-5 and Tbx5 in vitro and for conduction-system-specific gene expression in vivo. Furthermore, compound haploinsufficiency of Tbx5 and Nkx2-5 or Tbx5 and Id2 prevented embryonic specification of the ventricular conduction system. We conclude that a molecular pathway including Tbx5, Nkx2-5, and Id2 coordinates specification of ventricular myocytes into the ventricular conduction system lineage.


Development | 2004

The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system

Ivan P. Moskowitz; Anne Pizard; Vickas V. Patel; Benoit G. Bruneau; Jae B. Kim; Sabina Kupershmidt; Dan M. Roden; Charles I. Berul; Christine E. Seidman; Jonathan G. Seidman

We report a critical role for the T-box transcription factor Tbx5 in development and maturation of the cardiac conduction system. We find that Tbx5 is expressed throughout the central conduction system, including the atrioventricular bundle and bundle branch conduction system. Tbx5 haploinsufficiency in mice (Tbx5del/+), a model of human Holt–Oram syndrome, caused distinct morphological and functional defects in the atrioventricular and bundle branch conduction systems. In the atrioventricular canal, Tbx5 haploinsufficiency caused a maturation failure of conduction system morphology and function. Electrophysiologic testing of Tbx5del/+ mice suggested a specific atrioventricular node maturation failure. In the ventricular conduction system, Tbx5 haploinsufficiency caused patterning defects of both the left and right ventricular bundle branches, including absence or severe abnormalities of the right bundle branch. Absence of the right bundle branch correlated with right-bundle-branch block by ECG. Deficiencies in the gap junction protein gene connexin 40 (Cx40), a downstream target of Tbx5, did not account for morphologic conduction system defects in Tbx5del/+ mice. We conclude that Tbx5 is required for Cx40-independent patterning of the cardiac conduction system, and suggest that the electrophysiologic defects in Holt–Oram syndrome reflect a developmental abnormality of the conduction system.


Human Molecular Genetics | 2012

Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease

Scott Smemo; Luciene Cristina Gastalho Campos; Ivan P. Moskowitz; José Eduardo Krieger; Alexandre C. Pereira; Marcelo A. Nobrega

Recent studies have identified the genetic underpinnings of a growing number of diseases through targeted exome sequencing. However, this strategy ignores the large component of the genome that does not code for proteins, but is nonetheless biologically functional. To address the possible involvement of regulatory variation in congenital heart diseases (CHDs), we searched for regulatory mutations impacting the activity of TBX5, a dosage-dependent transcription factor with well-defined roles in the heart and limb development that has been associated with the Holt-Oram syndrome (heart-hand syndrome), a condition that affects 1/100 000 newborns. Using a combination of genomics, bioinformatics and mouse genetic engineering, we scanned ∼700 kb of the TBX5 locus in search of cis-regulatory elements. We uncovered three enhancers that collectively recapitulate the endogenous expression pattern of TBX5 in the developing heart. We re-sequenced these enhancer elements in a cohort of non-syndromic patients with isolated atrial and/or ventricular septal defects, the predominant cardiac defects of the Holt-Oram syndrome, and identified a patient with a homozygous mutation in an enhancer ∼90 kb downstream of TBX5. Notably, we demonstrate that this single-base-pair mutation abrogates the ability of the enhancer to drive expression within the heart in vivo using both mouse and zebrafish transgenic models. Given the population-wide frequency of this variant, we estimate that 1/100 000 individuals would be homozygous for this variant, highlighting that a significant number of CHD associated with TBX5 dysfunction might arise from non-coding mutations in TBX5 heart enhancers, effectively decoupling the heart and hand phenotypes of the Holt-Oram syndrome.


Development | 2009

sonic hedgehog is required in pulmonary endoderm for atrial septation.

Andrew D. Hoffmann; Michael A. Peterson; Joshua M. Friedland-Little; Stuart A. Anderson; Ivan P. Moskowitz

The genesis of the septal structures of the mammalian heart is central to understanding the ontogeny of congenital heart disease and the evolution of cardiac organogenesis. We found that Hedgehog (Hh) signaling marked a subset of cardiac progenitors specific to the atrial septum and the pulmonary trunk in the mouse. Using genetic inducible fate mapping with Gli1CreERT2, we marked Hh-receiving progenitors in anterior and posterior second heart field splanchnic mesoderm between E8 and E10. In the inflow tract, Hh-receiving progenitors migrated from the posterior second heart field through the dorsal mesocardium to form the atrial septum, including both the primary atrial septum and dorsal mesenchymal protrusion (DMP). In the outflow tract, Hh-receiving progenitors migrated from the anterior second heart field to populate the pulmonary trunk. Abrogation of Hh signaling during atrial septal progenitor specification resulted in atrial and atrioventricular septal defects and hypoplasia of the developing DMP. Hedgehog signaling appeared necessary and sufficient for atrial septal progenitor fate: Hh-receiving cells rendered unresponsive to the Hh ligand migrated into the atrium in normal numbers but populated the atrial free wall rather than the atrial septum. Conversely, constitutive activation of Hh signaling caused inappropriate enlargement of the atrial septum. The close proximity of posterior second heart field cardiac progenitors to pulmonary endoderm suggested a pulmonary source for the Hh ligand. We found that Shh is required in the pulmonary endoderm for atrial septation. Therefore, Hh signaling from distinct pulmonary and pharyngeal endoderm is required for inflow and outflow septation, respectively. These data suggest a model in which respiratory endoderm patterns the morphogenesis of cardiac structural components required for efficient cardiopulmonary circulation.


Circulation Research | 2001

Comparison of Two Murine Models of Familial Hypertrophic Cardiomyopathy

Bradley K. McConnell; Diane Fatkin; Christopher Semsarian; Karen A. Jones; Dimitrios Georgakopoulos; Colin T. Maguire; Michael J. Healey; James O. Mudd; Ivan P. Moskowitz; David A. Conner; Michael Giewat; Hiroko Wakimoto; Charles I. Berul; Frederick J. Schoen; David A. Kass; Christine E. Seidman; Jonathan G. Seidman

Abstract— Although sarcomere protein gene mutations cause familial hypertrophic cardiomyopathy (FHC), individuals bearing a mutant cardiac myosin binding protein C (MyBP-C) gene usually have a better prognosis than individuals bearing &bgr;-cardiac myosin heavy chain (MHC) gene mutations. Heterozygous mice bearing a cardiac MHC missense mutation (&agr;MHC403/+ or a cardiac MyBP-C mutation (MyBP-Ct/+) were constructed as murine FHC models using homologous recombination in embryonic stem cells. We have compared cardiac structure and function of these mouse strains by several methods to further define mechanisms that determine the severity of FHC. Both strains demonstrated progressive left ventricular (LV) hypertrophy; however, by age 30 weeks, &agr;MHC403/+ mice demonstrated considerably more LV hypertrophy than MyBP-Ct/+ mice. In older heterozygous mice, hypertrophy continued to be more severe in the &agr;MHC403/+ mice than in the MyBP-Ct/+ mice. Consistent with this finding, hearts from 50-week-old &agr;MHC403/+ mice demonstrated increased expression of molecular markers of cardiac hypertrophy, but MyBP-Ct/+ hearts did not demonstrate expression of these molecular markers until the mice were >125 weeks old. Electrophysiological evaluation indicated that MyBP-Ct/+ mice are not as likely to have inducible ventricular tachycardia as &agr;MHC403/+ mice. In addition, cardiac function of &agr;MHC403/+ mice is significantly impaired before the development of LV hypertrophy, whereas cardiac function of MyBP-Ct/+ mice is not impaired even after the development of cardiac hypertrophy. Because these murine FHC models mimic their human counterparts, we propose that similar murine models will be useful for predicting the clinical consequences of other FHC-causing mutations. These data suggest that both electrophysiological and cardiac function studies may enable more definitive risk stratification in FHC patients.


Journal of Clinical Investigation | 2014

A common genetic variant within SCN10A modulates cardiac SCN5A expression

Malou van den Boogaard; Scott Smemo; Ozanna Burnicka-Turek; David E. Arnolds; Harmen J.G. van de Werken; Petra Klous; David M. McKean; Jochen D. Muehlschlegel; J. Moosmann; Okan Toka; Xinan Yang; Tamara T. Koopmann; Michiel E. Adriaens; Connie R. Bezzina; Wouter de Laat; Christine E. Seidman; Jonathan G. Seidman; Vincent M. Christoffels; Marcelo A. Nobrega; Phil Barnett; Ivan P. Moskowitz

Variants in SCN10A, which encodes a voltage-gated sodium channel, are associated with alterations of cardiac conduction parameters and the cardiac rhythm disorder Brugada syndrome; however, it is unclear how SCN10A variants promote dysfunctional cardiac conduction. Here we showed by high-resolution 4C-seq analysis of the Scn10a-Scn5a locus in murine heart tissue that a cardiac enhancer located in Scn10a, encompassing SCN10A functional variant rs6801957, interacts with the promoter of Scn5a, a sodium channel-encoding gene that is critical for cardiac conduction. We observed that SCN5A transcript levels were several orders of magnitude higher than SCN10A transcript levels in both adult human and mouse heart tissue. Analysis of BAC transgenic mouse strains harboring an engineered deletion of the enhancer within Scn10a revealed that the enhancer was essential for Scn5a expression in cardiac tissue. Furthermore, the common SCN10A variant rs6801957 modulated Scn5a expression in the heart. In humans, the SCN10A variant rs6801957, which correlated with slowed conduction, was associated with reduced SCN5A expression. These observations establish a genomic mechanism for how a common genetic variation at SCN10A influences cardiac physiology and predisposes to arrhythmia.


Journal of Clinical Investigation | 2012

TBX5 drives Scn5a expression to regulate cardiac conduction system function

David E. Arnolds; Fang Liu; John P. Fahrenbach; Gene H. Kim; Kurt J. Schillinger; Scott Smemo; Elizabeth M. McNally; Marcelo A. Nobrega; Vickas V. Patel; Ivan P. Moskowitz

Cardiac conduction system (CCS) disease, which results in disrupted conduction and impaired cardiac rhythm, is common with significant morbidity and mortality. Current treatment options are limited, and rational efforts to develop cell-based and regenerative therapies require knowledge of the molecular networks that establish and maintain CCS function. Recent genome-wide association studies (GWAS) have identified numerous loci associated with adult human CCS function, including TBX5 and SCN5A. We hypothesized that TBX5, a critical developmental transcription factor, regulates transcriptional networks required for mature CCS function. We found that deletion of Tbx5 from the mature murine ventricular conduction system (VCS), including the AV bundle and bundle branches, resulted in severe VCS functional consequences, including loss of fast conduction, arrhythmias, and sudden death. Ventricular contractile function and the VCS fate map remained unchanged in VCS-specific Tbx5 knockouts. However, key mediators of fast conduction, including Nav1.5, which is encoded by Scn5a, and connexin 40 (Cx40), demonstrated Tbx5-dependent expression in the VCS. We identified a TBX5-responsive enhancer downstream of Scn5a sufficient to drive VCS expression in vivo, dependent on canonical T-box binding sites. Our results establish a direct molecular link between Tbx5 and Scn5a and elucidate a hierarchy between human GWAS loci that affects function of the mature VCS, establishing a paradigm for understanding the molecular pathology of CCS disease.


Circulation-cardiovascular Genetics | 2009

Sarcomere Mutations in Cardiomyopathy with Left Ventricular Hypertrabeculation

Lisa Dellefave; Peter Pytel; Stephanie K. Mewborn; Bassem N. Mora; Deborah L. Guris; Savitri Fedson; Darrel Waggoner; Ivan P. Moskowitz; Elizabeth M. McNally

Background— Mutations in the genes encoding sarcomere proteins have been associated with both hypertrophic and dilated cardiomyopathy. Recently, mutations in myosin heavy chain (MYH7), cardiac actin (ACTC), and troponin T (TNNT2) were associated with left ventricular noncompaction, a form of cardiomyopathy characterized with hypertrabeculation that may also include reduced function of the left ventricle. Methods and Results— We used clinically available genetic testing on 3 cases referred for evaluation of left ventricular dysfunction and noncompaction of the left ventricle and found that all 3 individuals carried sarcomere mutations. The first patient presented with neonatal heart failure and was referred for left ventricular noncompaction cardiomyopathy. Genetic testing found 2 different mutations in MYBPC3 in trans. The first mutation, 3776delA, Q1259fs, rendered a frame shift at 1259 of cardiac myosin-binding protein C and the second mutation was L1200P. The frameshift mutation was also found in this mother who displayed mild echocardiographic features of cardiomyopathy, with only subtle increase in trabeculation and an absence of hypertrophy. A second pediatric patient presented with heart failure and was found to carry a de novo MYH7 R369Q mutation. The third case was an adult patient with dilated cardiomyopathy referred for ventricular hypertrabeculation. This patient had a family history of congestive heart failure, including pediatric onset cardiomyopathy where 3 individuals in the family were found to have the MYH7 mutation R1250W. Conclusion— Genetic testing should be considered for cardiomyopathy with hypertrabeculation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development

Ivan P. Moskowitz; Jun Wang; Michael A. Peterson; William T. Pu; Alexander C. Mackinnon; Leif Oxburgh; Gerald C. Chu; Molly Sarkar; Charles I. Berul; Leslie B. Smoot; Elizabeth J. Robertson; Robert S. Schwartz; Jonathan G. Seidman; Christine E. Seidman

We report that the dominant human missense mutations G303E and G296S in GATA4, a cardiac-specific transcription factor gene, cause atrioventricular septal defects and valve abnormalities by disrupting a signaling cascade involved in endocardial cushion development. These GATA4 missense mutations, but not a mutation causing secundum atrial septal defects (S52F), demonstrated impaired protein interactions with SMAD4, a transcription factor required for canonical bone morphogenetic protein/transforming growth factor-β (BMP/TGF-β) signaling. Gata4 and Smad4 genetically interact in vivo: atrioventricular septal defects result from endothelial-specific Gata4 and Smad4 compound haploinsufficiency. Endothelial-specific knockout of Smad4 caused an absence of valve-forming activity: Smad4-deficient endocardium was associated with acellular endocardial cushions, absent epithelial-to-mesenchymal transformation, reduced endocardial proliferation, and loss of Id2 expression in valve-forming regions. We show that Gata4 and Smad4 cooperatively activated the Id2 promoter, that human GATA4 mutations abrogated this activity, and that Id2 deficiency in mice could cause atrioventricular septal defects. We suggest that one determinant of the phenotypic spectrum caused by human GATA4 mutations is differential effects on GATA4/SMAD4 interactions required for endocardial cushion development.

Collaboration


Dive into the Ivan P. Moskowitz's collaboration.

Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles I. Berul

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge