Ivan Pepić
University of Zagreb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan Pepić.
International Journal of Nanomedicine | 2014
Anita Hafner; Jasmina Lovrić; Gorana Perina Lakoš; Ivan Pepić
The application of nanotechnology in areas of drug delivery and therapy (ie, nanotherapeutics) is envisioned to have a great impact on public health. The ability of nanotherapeutics to provide targeted drug delivery, improve drug solubility, extend drug half-life, improve a drug’s therapeutic index, and reduce a drug’s immunogenicity has resulted in the potential to revolutionize the treatment of many diseases. In this paper, we review the liposome-, nanocrystal-, virosome-, polymer therapeutic-, nanoemulsion-, and nanoparticle-based approaches to nanotherapeutics, which represent the most successful and commercialized categories within the field of nanomedicine. We discuss the regulatory pathway and initiatives endeavoring to ensure the safe and timely clinical translation of emerging nanotherapeutics and realization of health care benefits. Emerging trends are expected to confirm that this nano-concept can exert a macro-impact on patient benefits, treatment options, and the EU economy.
Drug Development and Industrial Pharmacy | 2011
Pankaj Ranjan Karn; Zeljka Vanic; Ivan Pepić; Nataša Škalko-Basnet
Objective: Development of liposomal mucoadhesive drug delivery system, which is able to improve the bioavailability of poorly absorbed oral drugs by prolonging their gastric and intestinal residence time, through facilitating the intimate contact of the delivery system with the absorption membrane. Materials and methods: Liposomes containing model drug atenolol were prepared by the modified ethanol injection method. Liposomes containing atenolol were coated by different mucoadhesive polymers, for example, chitosan, Carbopol 974P, Eudragit L100, and Eudragit S100, to optimize the choice of coating material. The delivery systems were tested for their in vitro mucoadhesiveness. Results: Liposomes prepared by the ethanol injection method were of satisfactory size (around 100 nm, before coating). Through the coating of liposomes in the presence of unentrapped material, the entrapment efficiency for drug was increased. In vitro mucoadhesive test confirmed the mucoadhesive properties of the coated layer for all tested polymers; however, Eudragit S100-coated liposomes were superior to other coating materials. Discussion: Eudragit coating appeared to be an optimal polymer choice. These preliminary data indicate that polymer-coated mucoadhesive liposomes are able to carry sufficient amount of drug and to remain attached to the intestinal mucosa for a sufficient period of time to enable prolonged absorption of entrapped drug. Conclusion: While keeping in mind that the in vivo conditions may vary with the in vitro ones, we may recommend the system described in our work for possible oral delivery of peptides and phytochemicals.
Journal of Pharmaceutical Sciences | 2010
Ivan Pepić; Anita Hafner; Jasmina Lovrić; Boris Pirkić; Jelena Filipović-Grčić
Micelle systems composed of the polyoxyethylated nonionic surfactant Pluronic F127 (F127) and cationic polyelectrolyte chitosan (CH) were prepared with dexamethasone (DEX) as a hydrophobic model drug. The F127/CH micelles were characterised by their hydrodynamic diameter and a zeta-potential ranging between 25.4 and 28.9 nm and +9.3 and +17.6 mV, respectively. The DEX loading was between 0.48% and 0.56%, and no significant influence of CH on DEX loading was observed. All micelle systems were characterised by prolonged release profiles. The addition of CH significantly enhanced the in vitro DEX release rate and transport across Caco-2 cell monolayers, as compared to the CH-free F127 micelle system. This colloidal carrier was well tolerated in rabbit eyes, and no clinically abnormal signs in various ocular structures were observed. The increase in intraocular pressure (IOP) in rabbits was used to evaluate DEX ocular bioavailability. The AUC values showed a 1.7- and 2.4-fold increase in bioavailability with F127 and F127/0.015 (w/v) % CH micelle systems, respectively, as compared to a standard DEX suspension. These data indicate improved intraocular DEX absorption from the micelle systems, which can be ascribed to both F127 and CH corneal permeability enhancement.
Journal of Microencapsulation | 2011
Anita Hafner; Jasmina Lovrić; Ivan Pepić; Jelena Filipović-Grčić
In this study, the potential of lecithin/chitosan nanoparticles (NPs) as colloidal nanosystem for transdermal melatonin delivery was investigated. Mean diameter and zeta-potential of NPs differing in lecithin type (Lipoid S45 and S100) and chitosan content ranged between 113.7 and 331.5 nm and 4.6 and 31.2 mV, respectively. Melatonin loadings were up to 7.2%. The potential of lecithin/chitosan NPs to enhance transdermal melatonin delivery was investigated by determining the drug flux across dermatomed porcine skin and its skin deposition. Lecithin/chitosan NPs provided 1.3–2.3-fold higher flux compared to melatonin solution. The highest flux, 9.0 ± 0.21 µg/cm2/h, was observed for S45 lecithin/chitosan NPs with lecithin/chitosan weight ratio of 20:1. NP possible cytotoxicity in vitro was evaluated using human skin keratinocytes and fibroblasts. It was demonstrated that lecithin/chitosan NPs can be applied to skin cells at concentrations up to 200 µg/mL without inducing plasma membrane damage or cell viability decrease.
European Journal of Pharmaceutical Sciences | 2013
Ivan Pepić; Jasmina Lovrić; Jelena Filipović-Grčić
Non-parenteral delivery of drugs using nanotechnology-based delivery systems is a promising non-invasive way to achieve effective local or systemic drug delivery. The efficacy of drugs administered non-parenterally is limited by their ability to cross biological barriers, and epithelial tissues particularly present challenges. Polymeric micelles can achieve transepithelial drug delivery because of their ability to be internalized into cells and/or cross epithelial barriers, thereby delivering drugs either locally or systematically following non-parenteral administration. This review discusses the particular characteristics of various epithelial barriers and assesses their potential as non-parenteral routes of delivery. The material characteristics of polymeric micelles (e.g., size, surface charge, and surface decoration) and of unimers dissociated from polymeric micelles determine their interactions (non-specific and/or specific) with mucus and epithelial cells as well as their intracellular fate. This paper outlines the mechanisms governing the major modes of internalization of polymeric micelles into epithelial cells, with an emphasis on specific recent examples of the transport of drug-loaded polymeric micelles across epithelial barriers.
Drug Discovery Today | 2014
Ivan Pepić; Jasmina Lovrić; Biserka Cetina-Čižmek; Stephan Reichl; Jelena Filipović-Grčić
The development and registration of reformulated ophthalmic products (OPs) requires eye-related bioavailability (BA) assessments. Common BA algorithms associated with other routes of application, such as the oral route, cannot be easily applied to eye-related BA testing. Here, we provide an analysis of the current literature and suggestions for further directions in the development of high-capacity, cost-effective, and highly predictive nonclinical models of eye-related drug BA. One, or a combination of these models, has the potential for routine use in research laboratories and/or the pharmaceutical industry to overcome various obstacles in reformulated OP development and registration.
European Journal of Pharmaceutics and Biopharmaceutics | 2016
Marieta Duvnjak Romić; Maja Šegvić Klarić; Jasmina Lovrić; Ivan Pepić; Biserka Cetina-Čižmek; Jelena Filipović-Grčić; Anita Hafner
The aim of this study was to develop melatonin-loaded chitosan based microspheres as dry powder formulation suitable for wound dressing, rapidly forming hydrogel in contact with wound exudate. Microspheres were produced by spray-drying method. Fractional factorial design was employed to elucidate the effect of formulation and process parameters (feed flow rate, inlet air temperature, chitosan concentration, chitosan/melatonin ratio and chitosan/Pluronic® F127 ratio) on the product characteristics related to process applicability (production yield, entrapment efficiency and product moisture content) and microsphere performance in biological environment (microsphere mean diameter and surface charge). Appropriate formulation and process parameters for the establishment of efficient drying process resulting in fine-tuned chitosan and chitosan/Pluronic® F127 microspheres (efficient melatonin encapsulation, small diameter positive surface charge and low moisture content) were identified. Microspheres were characterized by appropriate flowability and high rate and extent of fluid uptake. Incorporation of Pluronic® F127 in microsphere matrix resulted in high melatonin amorphization and consequent higher melatonin release rate. Entrapment of melatonin in chitosan/Pluronic® F127 microspheres has potentiated chitosan antimicrobial activity against Staphylococcus aureus and five clinical isolates S. aureus MRSA strains. Microspheres were shown to be biocompatible with skin keratinocytes and fibroblasts at concentrations relevant for antimicrobial activity against planktonic bacteria.
European Journal of Pharmaceutical Sciences | 2015
Anita Hafner; Jasmina Lovrić; Marieta Duvnjak Romić; Marina Juretić; Ivan Pepić; Biserka Cetina-Čižmek; Jelena Filipović-Grčić
In this study, two types of nanosystems, namely lecithin/chitosan nanoparticles and Pluronic® F127/chitosan micelles, have been prepared and evaluated for their potential for the ocular delivery of melatonin, which is known to exert an ocular hypotensive effect. The melatonin content, particle size, zeta potential and in vitro drug release properties were studied as a function of the presence of chitosan in the nanosystem. Lecithin/chitosan nanoparticles were evaluated in terms of the mucoadhesive properties by a newly established method based on HCE-T cells, also used in in vitro biocompatibility and permeability studies. Lecithin/chitosan nanoparticles were significantly larger than the corresponding F127/chitosan micelles (mean diameter of 241.8 vs. 20.7nm, respectively) and characterised by a higher surface charge (22.7 vs. 4.3mV, respectively). The HCE-T cell viability assay did not show significant toxic effects of nanosystems investigated at the (relevant) chitosan concentration tested. The permeability study results confirmed the permeation enhancing effect of F127, which was hindered in the presence of chitosan. Lecithin/chitosan nanoparticles were characterised by prominent mucoadhesive properties and prolonged melatonin release, which was shown to control melatonin permeation across an in vitro corneal epithelial model. Such properties demonstrate the potential for nanoparticles to provide an extended pre-corneal residence time of melatonin, ensuring higher eye-related bioavailability and extended intraocular pressure reduction compared to melatonin in both aqueous and micelle solutions.
Carbohydrate Polymers | 2016
Filip Blažević; Tamara Milekić; Marieta Duvnjak Romić; Marina Juretić; Ivan Pepić; Jelena Filipović-Grčić; Jasmina Lovrić; Anita Hafner
Herein, we propose an innovative approach to improving wound healing. Our strategy is to deliver melatonin locally at the wound site by means of lecithin/chitosan nanoparticles. We used four types of chitosan that differed in terms of molecular weight and/or deacetylation degree. Melatonin encapsulation efficiency, nanoparticle size, zeta potential, biocompatibility and in vitro drug release were studied as a function of the type of chitosan used in preparation. The nanoparticles were evaluated in terms of their potential to promote wound epithelialisation via an in vitro scratch assay using a human keratinocyte (HaCaT) monolayer. The model wounds were treated with nanoparticle suspensions at a chitosan concentration of 5μgml(-1), which was based on preceding cell biocompatibility studies. Nanoparticles prepared with different types of chitosan showed similar effect on the keratinocyte proliferation/migration. Nanoparticle-mediated interplay of chitosan and melatonin was shown to be crucial for improved wound epithelialisation.
Drug Development and Industrial Pharmacy | 2014
Ivan Pepić; Jasmina Lovrić; Anita Hafner; Jelena Filipović-Grčić
Abstract The aim of this work was to optimize a formulation of the Pluronic® F127/L121 mixed micelle system and evaluate it in terms of stability upon dilution in biologically relevant media and to explore the possibility of preparing F127/L121 micelles in a powder form that can be simply reconstituted to an initial freshly made mixed micelle formulation. The mixed F127/L121 micelles were prepared at a relatively high concentration of Pluronics (1% w/w for both Pluronics) using two different methods (direct dissolution and film rehydration) with an external input of energy. The optimal preparation of the mixed F127/L121 micelles (hydrodynamic diameter (dh) = 75 nm, polydispersity index (PDI) = 0.287) was achieved using the film rehydration method followed by ultrasonication. Stability studies of the F127/L121 micelle system were performed at 25 °C and 37 °C and upon dilution in different biologically relevant media. The F127/L121 micelles were stable in phosphate buffered saline (PBS) upon 100-fold dilution for at least 10 d and in PBS containing bovine serum albumin upon 10 and 50-fold dilution for at least 48 and 12 h, respectively. A dry powdered form of the mixed micelles was prepared by freeze-drying after slow or fast freezing process. The influence of the type and amount of cryoprotectant on the prevention of F127/L121 micelles aggregation during the freeze-drying and reconstitution processes were evaluated. The use of trehalose (5%, w/w) and sucrose (2.5%, w/w) with slow and fast freezing process, respectively, resulted in a reconstituted product with mostly similar dh and PDI values of the fresh micelle formulation.