Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Rivalta is active.

Publication


Featured researches published by Ivan Rivalta.


Journal of Computational Chemistry | 2016

MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table

Francesco Aquilante; Jochen Autschbach; Rebecca K. Carlson; Liviu F. Chibotaru; Mickaël G. Delcey; Luca De Vico; Ignacio Fdez. Galván; Nicolas Ferré; Luis Manuel Frutos; Laura Gagliardi; Marco Garavelli; Angelo Giussani; Chad E. Hoyer; Giovanni Li Manni; Hans Lischka; Dongxia Ma; Per Åke Malmqvist; Thomas Müller; Artur Nenov; Massimo Olivucci; Thomas Bondo Pedersen; Daoling Peng; Felix Plasser; Ben Pritchard; Markus Reiher; Ivan Rivalta; Igor Schapiro; Javier Segarra-Martí; Michael Stenrup; Donald G. Truhlar

In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC‐PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large‐scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.


Biochemistry | 2011

S1-State Model of the O2-Evolving Complex of Photosystem II

Sandra Luber; Ivan Rivalta; Yasufumi Umena; Keisuke Kawakami; Jian Ren Shen; Nobuo Kamiya; Gary W. Brudvig; Victor S. Batista

We introduce a quantum mechanics/molecular mechanics model of the oxygen-evolving complex of photosystem II in the S(1) Mn(4)(IV,III,IV,III) state, where Ca(2+) is bridged to manganese centers by the carboxylate moieties of D170 and A344 on the basis of the new X-ray diffraction (XRD) model recently reported at 1.9 Å resolution. The model is also consistent with high-resolution spectroscopic data, including polarized extended X-ray absorption fine structure data of oriented single crystals. Our results provide refined intermetallic distances within the Mn cluster and suggest that the XRD model most likely corresponds to a mixture of oxidation states, including species more reduced than those observed in the catalytic cycle of water splitting.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Allosteric pathways in imidazole glycerol phosphate synthase

Ivan Rivalta; Mohammad M. Sultan; Ning-Shiuan Lee; Gregory Manley; J. Patrick Loria; Victor S. Batista

Protein allosteric pathways are investigated in the imidazole glycerol phosphate synthase heterodimer in an effort to elucidate how the effector (PRFAR, N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide) activates glutaminase catalysis at a distance of 25 Å from the glutamine-binding site. We apply solution NMR techniques and community analysis of dynamical networks, based on mutual information of correlated protein motions in the active and inactive enzymes. We find evidence that the allosteric pathways in the PRFAR bound enzyme involve conserved residues that correlate motion of the PRFAR binding loop to motion at the protein-protein interface, and ultimately at the glutaminase active site. The imidazole glycerol phosphate synthase bienzyme is an important branch point for the histidine and nucleotide biosynthetic pathways and represents a potential therapeutic target against microbes. The proposed allosteric mechanism and the underlying allosteric pathways provide fundamental insights for the design of new allosteric drugs and/or alternative herbicides.


Biochemistry | 2011

Structural-functional role of chloride in photosystem II.

Ivan Rivalta; Muhamed Amin; Sandra Luber; Serguei Vassiliev; Ravi Pokhrel; Yasufumi Umena; Keisuke Kawakami; Jian Ren Shen; Nobuo Kamiya; Doug Bruce; Gary W. Brudvig; M. R. Gunner; Victor S. Batista

Chloride binding in photosystem II (PSII) is essential for photosynthetic water oxidation. However, the functional roles of chloride and possible binding sites, during oxygen evolution, remain controversial. This paper examines the functions of chloride based on its binding site revealed in the X-ray crystal structure of PSII at 1.9 Å resolution. We find that chloride depletion induces formation of a salt bridge between D2-K317 and D1-D61 that could suppress the transfer of protons to the lumen.


Inorganic Chemistry | 2013

Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors

James D. Blakemore; Michael W. Mara; Maxwell N. Kushner-Lenhoff; Nathan D. Schley; Steven J. Konezny; Ivan Rivalta; Christian F. A. Negre; Robert C. Snoeberger; Oleksandr Kokhan; Jier Huang; Andrew B. Stickrath; Lan Anh Tran; Maria L. Parr; Lin X. Chen; David M. Tiede; Victor S. Batista; Robert H. Crabtree; Gary W. Brudvig

Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidation catalysis than crystalline IrO(2) and functions as a remarkably robust catalyst, capable of catalyzing water oxidation without deactivation or significant corrosion for at least 70 h. Elemental analysis reveals that BL contains carbon that is derived from the Cp* ligand (∼ 3% by mass after prolonged electrolysis). Because the electrodeposition of precursors 1 or 2 gives a highly active catalyst material, and electrochemical oxidation of other iridium complexes seems not to result in immediate conversion to iridium oxide materials, we investigate here the nature of the deposited material. The steps leading to the formation of BL and its structure have been investigated by a combination of spectroscopic and theoretical methods. IR spectroscopy shows that the carbon content of BL, while containing some C-H bonds intact at short times, is composed primarily of components with C═O fragments at longer times. X-ray absorption and X-ray absorption fine structure show that, on average, the six ligands to iridium in BL are likely oxygen atoms, consistent with formation of iridium oxide under the oxidizing conditions. High-energy X-ray scattering (HEXS) and pair distribution function (PDF) analysis (obtained ex situ on powder samples) show that BL is largely free of the molecular precursors and is composed of small, <7 Å, iridium oxide domains. Density functional theory (DFT) modeling of the X-ray data suggests a limited set of final components in BL; ketomalonate has been chosen as a model fragment because it gives a good fit to the HEXS-PDF data and is a potential decomposition product of Cp*.


Journal of Physical Chemistry B | 2013

Solution NMR and computational methods for understanding protein allostery.

Gregory Manley; Ivan Rivalta; J. Patrick Loria

Allosterism is an essential biological regulatory mechanism. In enzymes, allosteric regulation results in an activation or inhibition of catalytic turnover. The mechanisms by which this is accomplished are unclear and vary significantly depending on the enzyme. It is commonly the case that a metabolite binds to the enzyme at a site distant from the catalytic site, yet its binding is coupled to and sensed by the active site. This coupling can manifest in changes in structure, dynamics, or both at the active site. These interactions between the allosteric and active site, which are often quite distant from one another, involve numerous atoms as well as complex conformational rearrangements of the protein secondary and tertiary structure. Interrogation of this complex biological phenomenon necessitates multiple experimental approaches. In this article, we outline a combined solution NMR spectroscopic and computational approach using molecular dynamics and network models to uncover mechanistic aspects of allostery in the enzyme imidazole glycerol phosphate synthase.


Journal of Computational Chemistry | 2006

Methane activation by chromium oxide cations in the gas phase: A theoretical study

Ivan Rivalta; Nino Russo; Emilia Sicilia

Density Functional Theory, in its B3LYP formulation, was used to explore quantitative details of the potential energy hypersurfaces for the CH bond activation reaction of methane by chromium dioxide cation. Both doublet ground and quartet excited states of the cation were considered, and all the minima and transition states localized along the paths leading to the formation of the experimentally observed products were characterized. All the calculated paths involve spin inversions that decrease the barrier heights of the involved transition states but do not play a significant role. Reaction pathways were also studied employing the nonhybrid BP86 functional, the reparametrized B3LYP* functional, and the CCSD(T) approach. Because other examples in the literature indicate that sequential ligation enhances the reactivity of bare transition metals cations, the state‐selective reactivity of the chromium monoxide cation with respect to methane was also investigated and compared with that of the bare cation.


Journal of Chemical Physics | 2015

Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

Artur Nenov; Angelo Giussani; Javier Segarra-Martí; Vishal K. Jaiswal; Ivan Rivalta; Giulio Cerullo; Shaul Mukamel; Marco Garavelli

Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide conformational dependent fingerprints in dimeric systems, the performances of the selected reduced level of calculations have been tested in the construction of 2D electronic spectra for the in vacuo adenine monomer and the unstacked adenine homodimer, thereby exciting the Lb/La transitions with the pump pulse pair and probing in the Vis to near ultraviolet spectral window.


Journal of Chemical Theory and Computation | 2009

Adsorption of Ethylene, Vinyl, Acetic Acid, and Acetate Species on PdAu(111) and PdAu(100) Surface Alloys: A Cluster Model Study.

Ivan Rivalta; Gloria Mazzone; Nino Russo; Emilia Sicilia

The adsorption properties on PdAu surface alloys of ethylene and acetic acid molecules along with their derived vinyl and acetate surface species have been investigated by density functional theory calculations. Large clusters have been used to model second-neighbor Pd monomer pair ensembles on PdAu(100) and PdAu(111) surface alloys. Ethylene and acetic acid are weakly bonded to the Pd monomers, while vinyl and acetate are strongly bonded to both Pd and Au atoms being very stable surface species. The ligand effect of the gold atoms surrounding the Pd monomers has been shown to be stronger in the more dense PdAu(111) surface alloy. Cluster model results are in good agreement with experimental evidence providing important insight on the adsorption bonding modes, the assignment of the infrared features, and the preferred adsorption sites.


Journal of Chemical Theory and Computation | 2008

Theoretical Investigation of the Mechanism of Acid-Catalyzed Oxygenation of a Pd(II)-Hydride To Produce a Pd(II)-Hydroperoxide.

Sugata Chowdhury; Ivan Rivalta; Nino Russo; Emilia Sicilia

Density Functional Theory (DFT) has been applied to a comprehensive mechanistic study of the conversion reaction of the Pd(II)-hydride complex, (IMe)2(RCO2)PdH (R=CH3, Ph, and p-O2NC6H4), to the corresponding Pd(II)-hydroperoxide in the presence of molecular oxygen. The calculations have evaluated the two mechanistic proposed alternatives, that are both considered viable on the basis of current data, of slow RCO2H reductive elimination followed by oxygenation (Path A) and direct O2 insertion (Path B). Results suggest that the mechanism of direct insertion of molecular oxygen into the Pd-H bond of the initial complex is energetically preferred. The activation energy relative to the rate-determining step of Path A, indeed, is calculated to be lower than the activation energy of the rate determining step of the alternative Path B, whatever ligand (CH3CO2, Ph, CO2, p-O2NC6H4CO2) is coordinated to the Pd center. The calculated free activation energy of the rate-determining hydrogen abstraction step (ΔG* = 24.8 kcal/mol) in the case of the oxygenation reaction of the benzoate-ligated Pd(II)-hydride complex is in very good agreement with the experimentally determined value of 24.4 kcal/mol. In addition, according to the experimentally detected enhancement of the reaction rate due to the presence of a nitro group on the benzoate ligand, our calculations show that the transition state for the hydrogen atom abstraction by molecular oxygen along the pathway for the oxygenation reaction of (IMe)2(p-O2NC6H4CO2)PdH lies lower in energy with respect to the analogous transition state calculated for R=Ph.

Collaboration


Dive into the Ivan Rivalta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaul Mukamel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nino Russo

University of Calabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge