Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Stone is active.

Publication


Featured researches published by Ivan Stone.


Blood | 2013

SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML

May Kung Sutherland; Roland B. Walter; Scott C. Jeffrey; Patrick J. Burke; Changpu Yu; Heather Kostner; Ivan Stone; Maureen Ryan; Django Sussman; Robert P. Lyon; Weiping Zeng; Kimberly H. Harrington; Kerry Klussman; Lori Westendorf; David W. Meyer; Irwin D. Bernstein; Peter D. Senter; Dennis Benjamin; Julie A. McEarchern

Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.


Bioconjugate Chemistry | 2013

A Potent Anti-CD70 Antibody-Drug Conjugate Combining a Dimeric Pyrrolobenzodiazepine Drug with Site-Specific Conjugation Technology

Scott C. Jeffrey; Patrick J. Burke; Robert P. Lyon; David W. Meyer; Django Sussman; Martha Anderson; Joshua H. Hunter; Chris I. Leiske; Jamie B. Miyamoto; Nicole Nicholas; Nicole M. Okeley; Russell J. Sanderson; Ivan Stone; Weiping Zeng; Stephen J. Gregson; Luke Masterson; Arnaud Tiberghien; Philip W. Howard; David E. Thurston; Che-Leung Law; Peter D. Senter

A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.


Clinical Cancer Research | 2008

Potent Anticarcinoma Activity of the Humanized Anti-CD70 Antibody h1F6 Conjugated to the Tubulin Inhibitor Auristatin via an Uncleavable Linker

Ezogelin Oflazoglu; Ivan Stone; Kristine A. Gordon; Christopher G. Wood; Elizabeth A. Repasky; Iqbal S. Grewal; Che Leung Law; Hans Gerber

Purpose: The antitubulin agent monomethyl auristatin F (MMAF) induces potent antitumor effects when conjugated via protease cleavable linkers to antibodies targeting internalizing, tumor-specific cell surface antigens. Humanized 1F6 (h1F6) is a humanized monoclonal antibody targeting CD70, a member of the tumor necrosis factor family that is expressed on hematologic malignancies and carcinomas. Here, we tested h1F6–maleimidocaproyl (mc) MMAF conjugates, consisting of an uncleavable mc linker, for their ability to interfere with the growth of CD70-positive carcinomas. Experimental Design: To evaluate the optimal drug per antibody ratio, we conjugated either four or eight MMAF molecules to the cysteines that comprise the interchain disulfides of h1F6 and determined antitumor activities in vitro and in xenografted mice. The tumor types tested included glioblastoma, patient-derived renal cell carcinoma (RCC) cell isolates, and standard RCC tumor cell lines. Results: All h1F6-mcMMAF conjugates potently interfered with the growth of all carcinomas in vitro and resulted in complete responses of RCC tumors implanted orthotopically or s.c. in mice. In vitro, h1F6-mcMMAF(8) was generally more potent than h1F6-mcMMAF(4). However, h1F6-mcMMAF(4) displayed equal or better efficacy than h1F6-mcMMAF(8) when administered to tumor-bearing mice. Conclusions: We showed that h1F6-mcMMAF conjugates inhibited the growth of human carcinomas and that increased drug loading, while improving potency in vitro, did not substantially affect the pharmacodynamic and pharmacokinetic properties in vivo. Based on these findings, h1F6-mcMMAF(4), designated SGN-75, has been identified as a potential antibody-drug conjugate for clinical development.


Blood | 2009

Potent antitumor activity of the anti-CD19 auristatin antibody-drug conjugate hBU12-vcMMAE against rituximab sensitive and resistant lymphomas

Hans-Peter Gerber; May Kung-Sutherland; Ivan Stone; Caroll Morris-Tilden; Jamie B. Miyamoto; Renee S. McCormick; Stephen C. Alley; Nicole M. Okeley; Brad Hayes; Francisco J. Hernandez-Ilizaliturri; Charlotte Mcdonagh; Paul Carter; Dennis Benjamin; Iqbal S. Grewal

Despite major advances in the treatment of non-Hodgkin lymphoma (NHL), including the use of chemotherapeutic agents and the anti-CD20 antibody rituximab, the majority of patients eventually relapse, and salvage treatments with non-cross-resistant compounds are needed to further improve patient survival. Here, we evaluated the antitumor effects of the microtubule destabilizing agent monomethyl auristatin E (MMAE) conjugated to the humanized anti-CD19 antibody hBU12 via a protease-sensitive valine-citrulline (vc) dipeptide linker. hBU12-vcMMAE induced potent tumor cell killing against rituximab-sensitive and -resistant NHL cell lines. CD19 can form heterodimers with CD21, and high levels of CD21 were reported to interfere negatively with the activity of CD19-targeted therapeutics. However, we observed comparable internalization, intracellular trafficking, and drug release in CD21(low) and CD21(high), rituximab-sensitive and -refractory lymphomas treated with hBU12-vcMMAE. Furthermore, high rates of durable regressions in mice implanted with these tumors were observed, suggesting that both rituximab resistance and CD21 expression levels do not impact on the activity of hBU12-vcMMAE. Combined, our data suggest that hBU12-vcMMAE may represent a promising addition to the treatment options for rituximab refractory NHL and other hematologic malignancies, including acute lymphoblastic leukemia.


Molecular Cancer Therapeutics | 2008

Anti-CD30 diabody-drug conjugates with potent antitumor activity

Kristine M. Kim; Charlotte Mcdonagh; Lori Westendorf; Lindsay L. Brown; Django Sussman; Tiffany Feist; Robert P. Lyon; Stephen C. Alley; Nicole M. Okeley; Xinqun Zhang; Melissa Thompson; Ivan Stone; Hans-Peter Gerber; Paul Carter

Anti-CD30 diabodies were engineered with two cysteine mutations for site-specific drug conjugation in each chain of these homodimeric antibody fragments. Diabodies were conjugated with ∼4 equivalents of the anti-tubulin drugs, monomethyl auristatin E or F, via a protease-cleavable dipeptide linker, to create the conjugates, diabody-vcE4 and diabody-vcF4, respectively. Diabody conjugation had only minor (<3-fold) effects on antigen binding. Diabody-vcF4 was potently cytotoxic against the antigen-positive cell lines, Karpas-299 (34 pmol/L IC50) and L540cy (22 pmol/L IC50), and was 8- and 21-fold more active than diabody-vcE4 against these cell lines, respectively. Clearance of diabody-vcF4 (99-134 mL/d/kg) was 5-fold slower than for the nonconjugated diabody in naive severe combined immunodeficient mice. Diabody-vcF4 had potent and dose-dependent antitumor activity against established Karpas-299 xenografts and gave durable complete responses at well-tolerated doses. Biodistribution experiments with diabody-[3H]-vcF4 (0.72-7.2 mg/kg) in tumor-bearing mice showed a dose-dependent increase in total auristatin accumulation in tumors (≤520 nmol/L) and decrease in relative auristatin accumulation (≤8.1 %ID/g), with peak localization at 4 to 24 h after dosing. Diabody-vcF4 had ∼4-fold lower cytotoxic activity than the corresponding IgG1-vcF4 conjugate in vitro. A similar potency difference was observed in vivo despite 25- to 34-fold faster clearance of diabody-vcF4 than IgG1-vcF4. This may reflect that dose-escalated diabody-vcF4 can surpass IgG1-vcF4 in auristatin delivery to tumors, albeit with higher auristatin exposure to some organs including kidney and liver. Diabody-drug conjugates can have potent antitumor activity at well-tolerated doses and warrant further optimization for cancer therapy. [Mol Cancer Ther 2008;7(8):2486–97]


Molecular Cancer Therapeutics | 2008

Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index

Charlotte Mcdonagh; Kristine M. Kim; Eileen Turcott; Lindsay L. Brown; Lori Westendorf; Tiffany Feist; Django Sussman; Ivan Stone; Martha Anderson; Jamie B. Miyamoto; Robert P. Lyon; Stephen C. Alley; Hans-Peter Gerber; Paul Carter

An anti-CD70 antibody conjugated to monomethylauristatin F (MMAF) via a valine-citrulline dipeptide containing linker has been shown previously to have potent antitumor activity in renal cell cancer xenograft studies. Here, we generated a panel of humanized anti-CD70 antibody IgG variants and conjugated them to MMAF to study the effect of isotype (IgG1, IgG2, and IgG4) and Fcγ receptor binding on antibody-drug conjugate properties. All IgG variants bound CD70+ 786-O cells with an apparent affinity of ∼1 nmol/L, and drug conjugation did not impair antigen binding. The parent anti-CD70 IgG1 bound to human FcγRI and FcγRIIIA V158 and mouse FcγRIV and this binding was not impaired by drug conjugation. In contrast, binding to these Fcγ receptors was greatly reduced or abolished in the variant, IgG1v1, containing the previously described mutations, E233P:L234V:L235A. All conjugates had potent cytotoxic activity against six different antigen-positive cancer cell lines in vitro with IC50 values of 30 to 540 pmol/L. The IgGv1 conjugate with MMAF displayed improved antitumor activity compared with other conjugates in 786-O and UMRC3 models of renal cell cancer and in the DBTRG05-MG glioblastoma model. All conjugates were tolerated to ≥40 mg/kg in mice. Thus, the IgG1v1 MMAF conjugate has an increased therapeutic index compared with the parent IgG1 conjugate. The improved antitumor activity of the IgG1v1 auristatin conjugates may relate to increased exposure as suggested by pharmacokinetic analysis. The strategy used here for enhancing the therapeutic index of antibody-drug conjugates is independent of the antigen-binding variable domains and potentially applicable to other antibodies. [Mol Cancer Ther 2008;7(9):2913–23]


British Journal of Cancer | 2009

Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40

Ezogelin Oflazoglu; Ivan Stone; L. Brown; Kristine A. Gordon; N. Van Rooijen; M. Jonas; Che-Leung Law; Iqbal S. Grewal; Hans-Peter Gerber

SGN-40 is a therapeutic antibody targeting CD40, which induces potent anti-lymphoma activities via direct apoptotic signalling cells and by cell-mediated cytotoxicity. Here we show antibody-dependent cellular phagocytosis (ADCP) by macrophages to contribute significantly to the therapeutic activities and that the antitumour effects of SGN-40 depend on Fc interactions.


Molecular Cancer Therapeutics | 2016

Development of novel quaternary ammonium linkers for antibody-drug conjugates

Patrick J. Burke; Joseph Z. Hamilton; Thomas A. Pires; Jocelyn R. Setter; Joshua H. Hunter; Julia H. Cochran; Andrew B. Waight; Kristine A. Gordon; Brian E. Toki; Kim K. Emmerton; Weiping Zeng; Ivan Stone; Peter D. Senter; Robert P. Lyon; Scott C. Jeffrey

A quaternary ammonium-based drug-linker has been developed to expand the scope of antibody–drug conjugate (ADC) payloads to include tertiary amines, a functional group commonly present in biologically active compounds. The linker strategy was exemplified with a β-glucuronidase–cleavable auristatin E construct. The drug-linker was found to efficiently release free auristatin E (AE) in the presence of β-glucuronidase and provide ADCs that were highly stable in plasma. Anti-CD30 conjugates comprised of the glucuronide-AE linker were potent and immunologically specific in vitro and in vivo, displaying pharmacologic properties comparable with a carbamate-linked glucuronide-monomethylauristatin E control. The quaternary ammonium linker was then applied to a tubulysin antimitotic drug that contained an N-terminal tertiary amine that was important for activity. A glucuronide-tubulysin quaternary ammonium linker was synthesized and evaluated as an ADC payload, in which the resulting conjugates were found to be potent and immunologically specific in vitro, and displayed a high level of activity in a Hodgkin lymphoma xenograft. Furthermore, the results were superior to those obtained with a related tubulysin derivative containing a secondary amine N-terminus for conjugation using previously known linker technology. The quaternary ammonium linker represents a significant advance in linker technology, enabling stable conjugation of payloads with tertiary amine residues. Mol Cancer Ther; 15(5); 938–45. ©2016 AACR.


Molecular Cancer Therapeutics | 2017

Optimization of a PEGylated Glucuronide-Monomethylauristatin E Linker for Antibody–Drug Conjugates

Patrick J. Burke; Joseph Z. Hamilton; Scott C. Jeffrey; Joshua H. Hunter; Svetlana O. Doronina; Nicole M. Okeley; Jamie B. Miyamoto; Martha Anderson; Ivan Stone; Michelle Ulrich; Jessica K. Simmons; Erica E. McKinney; Peter D. Senter; Robert P. Lyon

The emergence of antibody–drug conjugates (ADC), such as brentuximab vedotin and ado-trastuzumab emtansine, has led to increased efforts to identify new payloads and develop improved drug-linker technologies. Most antibody payloads impart significant hydrophobicity to the ADC, resulting in accelerated plasma clearance and suboptimal in vivo activity, particularly for conjugates with high drug-to-antibody ratios (DAR). We recently reported on the incorporation of a discrete PEG24 polymer as a side chain in a β-glucuronidase-cleavable monomethylauristatin E (MMAE) linker to provide homogeneous DAR 8 conjugates with decreased plasma clearance and increased antitumor activity in xenograft models relative to a non-PEGylated control. In this work, we optimized the drug-linker by minimizing the size of the PEG side chain and incorporating a self-stabilizing maleimide to prevent payload de-conjugation in vivo. Multiple PEG-glucuronide-MMAE linkers were prepared with PEG size up to 24 ethylene oxide units, and homogeneous DAR 8 ADCs were evaluated. A clear relationship was observed between PEG length and conjugate pharmacology when tested in vivo. Longer PEG chains resulted in slower clearance, with a threshold length of PEG8 beyond which clearance was not impacted. Conjugates bearing PEG of sufficient length to minimize plasma clearance provided a wider therapeutic window relative to faster clearing conjugates bearing shorter PEGs. A lead PEGylated glucuronide-MMAE linker was identified incorporating a self-stabilizing maleimide and a PEG12 side chain emerged from these efforts, enabling highly potent, homogeneous DAR 8 conjugates and is under consideration for future ADC programs. Mol Cancer Ther; 16(1); 116–23. ©2016 AACR.


Cancer Research | 2016

Abstract 1195: SGN-CD352A: A novel humanized anti-CD352 antibody-drug conjugate for the treatment of multiple myeloma

Timothy S. Lewis; Devra Olson; Kristine A. Gordon; Sharsti Sandall; Jamie B. Miyamoto; Lori Westendorf; Germein Linares; Chris Leiske; Heather Kostner; Ivan Stone; Martha Anderson; Albina Nesterova; Mechthild Jonas; Che-Leung Law

Multiple myeloma (MM) is a hematologic malignancy of transformed plasma cells. In spite of recent advances, MM remains an incurable disease, underscoring the need to develop new targeted biological therapeutics to augment existing treatments. In this study we describe SGN-CD352A, a potent new CD352-targeting antibody-drug conjugate (ADC) under development for the treatment of MM. CD352, or SLAMF6 (Signaling Lymphocyte Activation Molecule family member 6), is a type 1 membrane protein in the SLAM family of immunoreceptors. Like other SLAM family members, CD352 is a positive regulator of natural killer (NK) cell functions. CD352 is also a tumor antigen expressed on B cell malignancies such as MM, chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). We observed CD352 expression on the surface of malignant plasma cells in 87% (13/15) of human multiple myeloma patient samples examined by flow cytometry. Monoclonal antibodies (mAbs) specific for human CD352 were produced and a lead antibody was selected based on affinity, endocytic internalization rate, and tumor cell cytotoxic activity as an ADC. SGN-CD352A is a humanized anti-CD352 engineered cysteine (ec) mAb (h20F3ec) to which two molecules of pyrrolobenzodiazepine (PBD) dimer, a potent DNA damaging cytotoxic drug, have been conjugated. Upon binding CD352 at the MM cell surface, SGN-CD352A undergoes rapid clathrin-dependent endocytosis ( Citation Format: Tim Lewis, Devra J. Olson, Kristine A. Gordon, Sharsti L. Sandall, Jamie Miyamoto, Lori Westendorf, Germein Linares, Chris Leiske, Heather Kostner, Ivan Stone, Martha Anderson, Albina Nesterova, Mechthild Jonas, Che-Leung Law. SGN-CD352A: A novel humanized anti-CD352 antibody-drug conjugate for the treatment of multiple myeloma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1195.

Collaboration


Dive into the Ivan Stone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge